学科分类
/ 1
18 个结果
  • 简介:研究了具有有界耦合函数的不确定复杂动态网络的脉冲同步问题.根据脉冲控制的概念和脉冲微分方程的稳定性理论,我们利用一个灵活有效的脉冲控制实现了复杂动态网络的脉冲同步.最后,通过对混沌系统做网络节点的动态网络的数字模拟,验证了我们提出的脉冲控制方案的有效性和实用性.

  • 标签: 复杂网络 同步 脉冲控制
  • 简介:应用自适应脉冲控制策略实现输出耦合复杂网络的同步.通过构造Lyapunov泛函,设计合适的自适应脉冲控器,并利用脉冲微分方程理论,建立了网络的同步准则.该准则保证了动态网络渐进同步于任意指定的网络中的单独节点的状态.数值模拟表明所得控制器的有效性.

  • 标签: 复杂网络 同步 自适应控制 脉冲控制 输出耦合
  • 简介:根据分数阶系统的相关理论研究了一类分数阶复杂网络混沌系统的投影同步问题,给出了分数阶复杂网络以及分数阶时滞复杂网络系统实现投影同步的充分性条件,仿真结果表明了方法的正确性.

  • 标签: 投影同步 分数阶系统 复杂网络
  • 简介:研究了改进的Morris—Lecar(ML)神经元模型的放电节律模式和模式转化的峰峰间期(interspikeintervals,ISIs)分岔结构,通过调节模型中的两个重要参数μ和Vk,发现对于固定的μ,改变Vk,神经元呈现出从倍周期级联分岔到加周期分岔的复杂结构,放电模式从静息态转化为周期、混沌簇放电状态;若选取此分岔过程中的某一Vk值,对μ进行调节,呈现出的ISIs分岔结构在很大程度上取决于单个神经元的放电节律模式,且单个神经元处于混沌簇放电时,肛带来的分岔动力学行为较丰富.由于神经元能够通过动作电位对信息进行编码,所以我们推测,研究神经元的放电节律模式和动作电位的ISIs分岔结构能为理解神经信息编码机制提供线索.

  • 标签: 分岔 峰峰间期 神经编码
  • 简介:基于转子动力学、Hertz理论和非线性动力学理论,针对一端支座松动的滚动轴承-转子系统的运动特征,考虑了松动间隙的非线性情况,建立了系统的动力学方程.在对转子系统动力学方程进行数值积分之后,通过分叉图、庞加莱图、相图和关联维数等显示了转子系统随转速变化和松动间隙的扩展会出现复杂动力学现象,并且研究了滚动轴承-转子系统在支承松动时的分岔和混沌运动及其变化规律,得出了有工程价值的结论,这些结论可为该类故障的诊断提供参考.

  • 标签: 支座松动 混沌运动 故障诊断 动力学 滚动轴承-转子系统
  • 简介:采用面向对象技术对复杂机械系统动力模型元素进行了分析.根据其特点提出了支持动力学仿真建模平台的模型元素类体系结构,并对该平台关键技术--关联关系管理和子系统建模进行了探讨.最后应用上述技术开发出了仿真建模平台InteDyn,并以汽车整车模型和悬架模型为例证明了这些技术的可行性和有效性.

  • 标签: 复杂机械系统 动力学 建模 模型元素 面向对象
  • 简介:根据符号动力系统与真实动力学系统拓扑共轭的特性,本文提出动态标架分割法,把动力学系统的某时间变量序列转化成符号序列;运用Lemple-Ziv复杂度算法计算该符号序列的复杂度值,据此对动力学系统的复杂性进行分析,从而可以对动力学系统的性质进行定性地判断,以杜芬振子为例,数值模拟结果表明基于动态标架分割法计算得到的复杂度能够很好地描述系统的复杂性,并可定性地判断系统的性质。

  • 标签: 符号时间序列 动态标架分割法 Lemple-Ziv复杂度 动力学系统
  • 简介:在许多线性振动的教材和手册中,关于固有振节点规律表述存在不妥.本文对该问题进行分析,指出必须理解Гантмахер和Крейн关于固有振节点定理的前提和局限性.文中详细分析了两自由度系统固有振节点的规律,给出若干新的结论.基于该规律对一类多自由度组合系统的固有振进行分析,说明可人为设计结构来满足特定的固有振阶次与节点数关系.

  • 标签: 固有振型 节点 振荡矩阵 离散系统
  • 简介:结构损伤前后动力特性的变化来快速、直接、方便地判定损伤的存在、程度及位置.本文采用曲率模态对刚架结构的损伤检测进行了研究.首先用有限元法计算出结构的位移模态振,然后用差分法计算出曲率模态振.数值模拟结果表明:曲率模态振对结构的损伤敏感,可同时确定结构损伤的存在、程度和位置,并且可以用于结构多位置损伤的检测.实验结果证实了数值模拟结论.

  • 标签: 模态振型 结构损伤检测 差分法计算 动力特性 有限元法 刚架结构
  • 简介:针对可分矩阵的特性,结合2^N类算法为可分指数矩阵的计算提出一种快速精细积分法.核心思想是:利用可分矩阵中的子矩阵进行分块计算;增加Taylor展开式的保留项数,减少迭代次数.一方面,程序实现简便,另一方面,数值算例表明:对矩阵维数很大的可分指数矩阵计算来说,本文的快速精细积分法减少了计算量和存储量,大大地提高了计算效率.

  • 标签: 可分型指数矩阵 2N类算法 快速精细积分法 子矩阵
  • 简介:研究了金字塔芯层点阵夹芯梁的自由振动和非线性受迫振动特性.基于折线理论推导出两端简支金字塔点阵夹芯梁的非线性动力学方程.计算点阵夹芯梁固有频率并进行了验证.分析了杆件半径、杆件倾斜角度和芯层高度对点阵夹芯梁固有频率的影响.研究了点阵夹芯梁在不同激励幅值和不同结构参数下的非线性幅频响应特性.结果表明,随着各结构参数的增大,夹芯梁的固有频率均呈增大后减小的变化规律,并且芯层结构参数对点阵夹芯梁的非线性响应存在复杂影响.

  • 标签: 振动分析 点阵夹芯梁 非线性幅频响应 结构参数 固有频率
  • 简介:含vanderPol自激项的单摆系统是典型的自激机械系统,本文研究了该系统的张弛振荡特性.首先通过引入新的时间尺度和变量,把原系统表示成标准的快慢系统.然后基于几何奇异摄动理论,求得系统的慢变流形及其结构,从而证明了张弛振荡解的存在性,并进一步求得了张弛振荡解及其周期的近似表达式.理论结果表明,发生张弛振荡时,单摆快速通过其平衡位置,而在远离平衡位置的一段区域上停留较长时间,且存在两个分界点把快速运动和慢速运动分隔开.数值算例证明了理论分析的正确性.

  • 标签: 自激单摆 张弛振荡 奇异摄动 慢变流形 快慢系统
  • 简介:中心直裂纹巴西圆盘试样可以用于脆性材料在纯Ⅰ、纯Ⅱ以及Ⅰ-Ⅱ复合载荷下的动态断裂韧度的测试.通过改变径向冲击的加载角口(加载方向相对于裂纹的倾斜角),可以方便地实现不同的Ⅰ、Ⅱ动态断裂实验.本文用有限元软件ANSYS对试样进行动态复合断裂模拟分析,研究了不同载荷、不同材料以及不同试样尺寸对动态无量纲应力强度因子的影响,得到了纯Ⅱ加载所对应的加载角θa的近似计算公式.对于在斜坡载荷作用下的复合断裂,Ⅰ、Ⅱ应力强度因子具有相似的时间历程曲线,其比值逐渐趋近于一个常数.本文给出了不同无量纲裂纹长度的试样在不同加载角下对应的Ⅰ、Ⅱ无量纲应力强度因子的比值K1(t)/KⅡ(t)(该比值称为复合比),利用该复合比,可以通过应变能密度因子准则求出试样的起裂角β0,得到的结果与文献给出的试验结果吻合得很好.

  • 标签: 中心直裂纹巴西圆盘 复合型动态断裂 纯Ⅱ型加载角θⅡ 无量纲应力强度因子 复合比K1(t)/KⅡ(t) 起裂角β0
  • 简介:考虑环境阻尼因素的影响,研究了具有运动约束作用Kelvin-Voigt输流曲管的混沌运动现象.数值仿真表明,输流曲管系统在某些参数取值时具有混沌运动的可能,管道材料的粘弹性系数和环境阻尼等因素对曲管的动力响应产生较大的影响.这些结论可为工程管道系统的铺设与设计提供参考.

  • 标签: 混沌运动 阻尼作用 环境 t型 数值仿真 约束作用
  • 简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩早已提出的一条简单而统一的新途径,系统地建立了弹性膜结构动力学的各类非传统Hamilton变分原理.这种新的非传统Hamilton变分原理能反映这种动力学初值一边值问题的全部特征.文中首先给出膜结构动力学的广义虚功原理的表式,然后从该式出发,不仅能得到膜结构动力学的虚功原理,而且通过所给出的一系列广义Legendre变换,还能系统地成对导出弹性膜结构动力学的5类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、4类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、3类变量(Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)和2类变量(Nα,Nβ,Sαβ,u,v,w)非传统Hamilton变分原理的互补泛函、以及相空间(Pα,Pβ,pγ,u,v,w)非传统Hamilton变分原理的泛函与1类变量(u,v,w)非传统Hamilton变分原理势能形式的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.

  • 标签: 非传统Hamilton型变分原理 膜结构 几何非线性 弹性动力学 对偶互补 初值-边值 问题 相空间
  • 简介:首先研究了非线性随机动力系统所对应的Fokker-Planck-Kolmogorov(FPK)方程.其次,讨论了微分方程的三阶TVDRunge-Kutta关于时间的离散差分格式以及关于空间离散的五阶WeightedEssentiallynonOscillatory(WENO)差分格式,并将其相结合,得到FPK方程的TVDRunge-KuttaWENO差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.

  • 标签: 非线性系统 FPK方程 有限差分法 TVD龙格-库塔格式 ENO格式 WENO格式
  • 简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩提出的一条简单而统一的新途径,系统地建立了平面框架结构折线型弹塑性动力学的各类非传统Hamilton变分原理.文中首先给出平面框架结构折线型弹塑性动力学的广义虚功原理的表式,然后从该式出发,不仅能得到平面框架结构折线型弹塑性动力学的虚功原理,而且通过所给出的广义Legendre变换,还能系统地成对导出平面框架结构折线型弹塑性动力学的5类变量分原理的互补泛函,以及1类变量和相空间非传统Hamilton变分原理的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.

  • 标签: 框架结构 弹塑性动力学 相空间 非传统HAMILTON型变分原理 初值-边值问题
  • 简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.

  • 标签: 非线性系统 FPK方程 有限差分法 可朗克-尼考尔逊隐式差分格式