学科分类
/ 1
18 个结果
  • 简介:对直流和混沌电流激励下的Hodgkin—Huxley(H—H)神经元,将周期的微扰动信号分别作用于神经元的不同离子通道,控制神经元放电行为.数值结果表明:作用于不同离子通道的微扰动控制信号,引起完全不同的神经元放电行为;如这些扰动信号可以使神经元从周期放电转变为抛物线型簇放电、从混沌放电转变为周期放电。

  • 标签: 周期 微扰动 神经元 放电行为 控制信号 混沌电流
  • 简介:研究了由功能梯度材料制成的薄壁圆柱壳的自由振动.采用幂律分布规律描述功能梯度材料沿厚度的梯度性质,根据Donnell壳体理论,导出了功能梯度材料薄壁圆柱壳线性振动的简化控制方程.基于此理论分析了功能梯度圆柱壳的自由振动特性,给出了两端简支功能梯度材料薄壁圆柱壳小挠度固有振动的频率公式.以简支圆柱壳作为算例,与前人结果及有限元法对比验证了该简化功能梯度薄壁圆柱壳理论的正确,同时讨论了周向波数及梯度指数对其频率的影响.

  • 标签: 功能梯度材料 薄壁圆柱壳 线性振动 简化理论
  • 简介:采用弹性理论建立了功能梯度材料板的静力平衡方程,利用静力平衡方程确定了功能梯度材料板的中性面位置,在此基础上推导出了功能梯度材料板在均匀温度场中的非线性振动及屈曲微分方程组,求得了功能梯度材料圆板的非线性振动及屈曲的近似解,讨论分析了中性面位置、梯度指数、温度等因素对功能梯度材料圆板非线性振动及屈曲的影响.把该方法计算结果与有限元计算结果进行了比较,验证了该方法的计算结果是可靠的.算例分析表明,中性面位置对均匀温度场中功能梯度材料圆板的非线性振动及屈曲有一定影响.

  • 标签: 功能梯度 材料 非线性 振动 屈曲 温度
  • 简介:采用弹性理论建立了功能梯度材料板的静力平衡方程,利用静力平衡方程确定了功能梯度材料板的中性面位置,在此基础上推导出了功能梯度材料板在均匀温度场中的非线性振动及屈曲微分方程组,求得了功能梯度材料椭圆板的非线性振动及屈曲的近似解,讨论分析了中性面位置、梯度指数、温度等因素对功能梯度材料椭圆板非线性振动及屈曲的影响.把该方法计算结果与有限元计算结果进行了比较,验证了该方法的计算结果是可靠的.算例分析表明,中性面位置对均匀温度场中功能梯度材料椭圆板的非线性振动及屈曲有一定影响.

  • 标签: 功能梯度 材料 椭圆板 非线性 振动 屈曲
  • 简介:采用Hodgkin-Huxley神经元模型,在二维随机神经网络中引入局部扩散功能缺陷,研究了神经网络中非对称缺陷附近的方形失去扩散功能的缺陷对螺旋波动力学行为的影响.缺陷使螺旋波降低传播速度的行为与缺陷的位置和尺寸有关:靠近螺旋波中心的缺陷影响最为显著,当缺陷远离中心位置时,缺陷的作用明显减弱;缺陷尺寸越大,影响也越显著.同时观察到,在弱耦合神经网络中,缺陷的存在导致了螺旋波的漂移现象.进一步研究缺陷和通道噪声同时存在时系统时空斑图的演化行为,结果发现,噪声作用下缺陷处形成了新的波源.最后,通过分析神经元放电节律和平均膜电位的变化揭示了缺陷对神经网络时空行为影响的机理.

  • 标签: 神经元网络 缺陷 通道噪声 时空斑图
  • 简介:以两对边简支另两对边自由的功能梯度材料板为研究对象,首先建立了考虑材料物性参数与温度相关的、在热/机械载荷共同作用下的几何非线性动力学方程,采用渐进摄动法对系统在1:1内共振-主参数共振-1/2亚谐共振情况下的非线性动力学行为进行了摄动分析,得到系统的四自由度平均方程,并对平均方程进行数值计算,分析外激励对系统非线性动力学行为的影响,发现在一定条件下通过改变外激励可以改变系统的运动形式,产生混沌运动.另外,第二阶模态的幅值远比第一阶模态的幅值大,这应该是两阶模态耦合产生内共振的结果,因此,研究该类结构的非线性动力学行为时不应该只考虑一阶模态,而应考虑到前两阶甚至更多阶模态的相互作用,以便于更好地利用或控制其运动形式.

  • 标签: 功能梯度材料板 复合边界条件 混沌运动 内共振
  • 简介:运用Bell多项式定理研究了一个(2+1)维AKNS方程的可积,得到双线性方程、Backlund变换以及运用Backlund变换求得其孤子解,最后运用Bell多项式得出Lax对.

  • 标签: BELL多项式 BACKLUND变换 孤子解
  • 简介:浦肯野神经元是小脑皮层唯一的输出神经元,其传入纤维主要包括来自橄榄核的盘状纤维和来自皮层颗粒神经元的平行纤维.基于与实际神经系统十分相似浦肯野神经元回路模型,本文研究了回路中三种神经元(浦肯野神经元,颗粒神经元,盘状纤维)的相位响应曲线(PRC)并结合它们各自的f-I曲线对来区分三种神经元的兴奋;进而对不同类型的神经元之间的同步进行分析,着重考察了不同神经元之间突触的电导系数与浦肯野神经元树突上的CaP电导系数的影响等,分析结果显示神经元之间同步对于它们信息传递起着重要作用.

  • 标签: 浦肯野神经元 相位响应曲线 同步性 突触电导系数 CaP电导系数
  • 简介:为了满足空间探测任务的要求,需采用轻质的伸杆机构支撑各类探测载荷远离卫星本体以避免平台剩磁对空间测量信息的干扰,而挠伸杆的弹性振动会耦合影响到卫星本体,从而降低卫星本体的姿态控制精度.考虑到挠附件振动的复杂及其对航天器本体的耦合影响,采用最优指令整形抑制挠伸杆的低阶模态振动,并在本体控制中设计自适应扰动抑制滤波器进一步抵消挠伸杆的残余振动对本体的干扰作用.仿真结果表明,此复合振动控制方法可显著的提高此小卫星的姿态控制精度.

  • 标签: 挠性伸杆 最优指令整形 自适应扰动抑制滤波器 复合振动控制
  • 简介:基于动力系统的稳定性理论、数值计算分岔图和线性化系统的最大Lyapunov指数,研究了经兴奋化学耦合的快峰神经元的同步动力学.研究表明,随着一些关键参数的改变,耦合神经元能呈现丰富的同步行为,如各种周期的同步和混沌的同步.研究结果对理解神经元系统的同步运动具有指导意义.

  • 标签: 快峰神经元模型 兴奋性化学突触 同步
  • 简介:根据Rumyantsev提出的Poincaré—Chetaev变量下的广义Routh方程.用无限小变换的方法研究它的对称与守恒量,得到守恒量存在的条件和形式.该结果比以往的Poincaré—Chetaev方程的相关结论更一般.最后.举例说明结果的应用。

  • 标签: Poincaré-Chetaev变量 广义Routh方程 对称性 守恒量
  • 简介:利用CMAC神经网络与PID控制算法,提出了一种针对飞行器挠结构振动的混合控制方法.首先在给出系统动力学方程的基础上,利用CMAC神经网络的具体特点,给出了神经网络算法;进而将PID控制算法引入控制系统,形成了一种混合控制方法,该方法具有CMAC神经网络与PID控制算法两者的优点.最后针对复杂的飞行器挠结构振动问题进行了实例仿真,说明了算法的有效.

  • 标签: 挠性结构 控制研究 CMAC神经网络 PID控制算法 混合控制方法 神经网络算法
  • 简介:建立随机风作用下高速列车动力学参数的可靠优化设计方法.首先考虑自然风的脉动特性,采用Cooper理论和谐波叠加法模拟随车移动点的脉动风速,给出随机风作用下高速列车非定常气动载荷的计算方法.然后建立高速列车车辆系统动力学模型,计算高速列车的运行安全,并基于可靠性理论,给出随机风作用下高速列车失效概率的计算方法.在此基础上,以高速列车动力学参数为优化设计变量,以失效概率和轮轴横向力为优化目标,采用多目标遗传算法NSGA—II进行动力学参数的自动寻优,建立随机风作用下高速列车动力学参数的可靠优化设计模型.经可靠优化计算,高速列车的失效概率由原始的0.4884降低为0.1406,轮轴横向力由原始的45.13kN降低为43.01kN.通过优化高速列车动力学参数可以显著改善随机风作用下高速列车的运行安全

  • 标签: 随机风 可靠性优化 动力学参数 失效概率 多目标遗传算法
  • 简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在判据的正确,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:根据符号动力系统与真实动力学系统拓扑共轭的特性,本文提出动态标架分割法,把动力学系统的某时间变量序列转化成符号序列;运用Lemple-Ziv复杂度算法计算该符号序列的复杂度值,据此对动力学系统的复杂进行分析,从而可以对动力学系统的性质进行定性地判断,以杜芬振子为例,数值模拟结果表明基于动态标架分割法计算得到的复杂度能够很好地描述系统的复杂,并可定性地判断系统的性质。

  • 标签: 符号时间序列 动态标架分割法 Lemple-Ziv复杂度 动力学系统
  • 简介:峰放电频率适应是神经元在信息处理过程中重要的动力学特性之一.当神经系统受到外电场作用时,会对其动力学行为以及神经电信息的产生、传导产生影响.我们基于Leakyintegrate-and-fire(LIF)神经元模型,建立了外电场作用下改进的LIF神经元模型.采用随时间演化的膜电位曲线和峰放电频率曲线,以及随外电场变化的起始峰放电频率曲线和稳态峰放电频率曲线,研究不同强度、频率外电场作用下改进的LIF模型的适应变化.此外,还利用相邻峰峰间期(ISI)之间的相关进一步阐明外电场对神经元适应的影响.

  • 标签: 峰放电频率适应性 外电场 Leaky integrate—and—fire模型 ISI 相关性
  • 简介:利用参数互异的Fitzhugh—Nagumo神经元构建了含耦合时滞的无标度神经元网络模型,通过数值模拟的方法,提出研究参数异质和耦合时滞影响下神经元网络的共振动力学.结果发现,当耦合项中不含时滞时,适中的参数异质性能够使得神经元网络对外界弱周期信号的响应达到最优,即适中的参数异质性能够诱导神经元网络的共振响应,而且异质诱导共振对耦合强度具有鲁棒.更重要的是,耦合时滞对参数异质作用下神经元网络的共振特性也有着显著影响.当时滞约为信号周期的整数倍时,神经元网络能够周期性地出现共振现象,即适当的耦合时滞能够诱导神经元网络的多重共振,而且这种现象在异质参数的适当范围内都能明显出现.

  • 标签: 共振 异质性 时滞 神经元网络 谱放大因子