学科分类
/ 1
11 个结果
  • 简介:本文对长短波相互作用方程作行波变换后转化成第一种椭圆方程,利用第一种椭圆方程的解和Bcklund变换,构造了长短波相互作用方程的无穷序列新解.这里包括了椭圆函数解、双曲函数解、指数函数解和有理函数解.

  • 标签: 第一种椭圆方程 无穷序列新解 Bcklund变换
  • 简介:分析了非线性SanVenant方程的解的特性,并在统一考虑阻力项的影响的基础上,分析了用Pressmainn格式求解非线性SanVenant方程的数值稳定性和收敛性.研究了φ和θ不同取值情况下,差分方程数值解的收敛情况与相对时间步长(Δt)/(Δx)和相对波长L/(Δx)的关系.指出数值解总是存在衰减和弥散现象,在实际模拟过程中,应合理选择φ和θ值,以兼顾数值衰减幅度和模拟速度.

  • 标签: 非线性 稳定性 收敛性
  • 简介:研究了一类抽象耦合非线性梁方程在Hilbert空间中的初值问题.首先运用Galerkin方法对个方程进行一定的处理,然后证明收敛性,最后证明了上述非线性梁方程的整体弱解的存在性.

  • 标签: 非线性 耦合 梁方程 整体解
  • 简介:利用加性掩盖和函数调制种混沌加密方式对模拟信号进行加密,分别从幅值和频率方面分析加性掩盖方式和函数调制方式,对比种加密方式加密效果,了解种加密方式的差异.计算结果表明:函数调制方式在幅值和频率的范围上都好于加性掩盖方式的幅值和频率范围,函数调制方式比加性掩盖方式更具安全性.

  • 标签: 混沌加密 加性掩盖 函数调制 模拟信号
  • 简介:运用Galerkin方法讨论了一类具有记忆项的耦合非线性抽象方程的初值问题,根据方程的特点,巧妙地对个方程进行相加,并结合微积分的性质得到了所要的结果,然后研究收敛性,最后证明了方程整体弱解的存在性.

  • 标签: 记忆项 耦合 非线性 抽象方程组 整体解
  • 简介:建立了自由度点碰撞振动系统的动力学模型,给出了碰撞振动系统产生粘滞的条件,分析了系统存在的粘滞运动,采用打靶法,利用变步长逐次迭代逼近的方法求解系统的不稳定的周期碰撞运动,即Poincare截面上的不动点,通过对自由度点碰撞振动系统进行数值模拟显示了系统在一定参数条件下存在周期倍化分叉和Hopf分叉,同时通过数值模拟的方法得到了以自由度点碰撞振动系统Poincare截面上的不变圈表示的拟周期响应,并进一步分析了随着分岔参数的变化,自由度点碰撞振动系统周期运动经拟周期分叉和周期倍化分叉向混沌的演化路径。

  • 标签: 碰撞振动 两点碰撞 周期运动 POINCARE映射 分叉 混沌
  • 简介:基于种齿轮碰撞模型进行数值和实验的研究比较:(1)含啮合间隙的刚性碰撞齿轮系统,假设轮齿间的碰撞在瞬间完成,边界为刚性;(2)含弹性约束和啮合间隙的弹性碰撞齿轮系统,空隙范围内部齿轮自由运动,边界为弹性,用无质量弹簧一阻尼器描述.文中主要通过实验研究对种齿轮接触模型的动力学响应进行分析比较:首先用实验结果验证数值仿真的正确性,之后对种不同的齿轮传动系统在不同参数下的实验数据和仿真结果分别进行比较,并对种不同的齿轮传动系统所展现的复杂动力学现象进行分析.

  • 标签: 齿轮传动 碰撞 实验 频谱
  • 简介:研究了端受扭转弹簧约束的简支输流管道的固有频率特性和静态失稳临界流速.根据梁模型横向弯曲振动模态函数,由端部支承和约束边界条件得到了其模态函数的一般表达式.根据动力方程的特征方程,具体分析了约束弹性刚度、流体压强、流速和管截面轴向力等参数对管道固有频率特性和静态失稳临界流速的影响.数值分析表明,约束弹性刚度的增大使管道的固有频率和失稳临界流速明显提高;流体流速、压强和管截面受到的轴向压力的增加使管道的固有频率和失稳临界流速降低.当管道的固有频率和失稳临界流速较低时,可以通过增加端部约束的方法来提高.

  • 标签: 输流管道 简支 弹性约束 固有频率 临界流速
  • 简介:用直接积分法计算个耦合VanderPol振子系统的一阶近似守恒量,将个耦合VanderPol振子系统看成是未受微扰系统与微扰项的迭加,先通过坐标变换将未受微扰系统解耦,并对解耦系统的3种可能状态进行讨论,得到未受微扰系统的13个精确守恒量,再考虑微扰项对精确守恒量的影响,运用一阶近似守恒量的性质,得到1个稳定的一阶近似守恒量.另外,由13个精确守恒量直接得到13个平凡的一阶近似守恒量.

  • 标签: VAN der Pol振子系统 精确守恒量 一阶近似守恒量
  • 简介:为全面了解和准确预测质点动力学系统运动特性.本文以具有固定边界的质点动力学系统为例,构建了用于研究双自由度质点运动系统的余量谐波平衡解程序.解程序融合了谐波平衡与同伦方法优势,其高阶近似仅依赖于初始谐波近似,不需要根据前一阶近似进行调整.研究结果表明:本文给出的2-阶近似频率比已有的方法结果更加精确,相对误差不同程度减小,相应的近似响应与数值解更加吻合.因此,余量谐波平衡方法可广泛应用于其它质点动力学问题研究中.

  • 标签: 双自由度振动系统 余量谐波平衡 高阶近似 频率响应
  • 简介:一个可调节速度的皮带驱动的干摩擦振子系统,设其干摩擦力大小是常值且个激励频率是谐调的,本文对这个简单的力学模型进行了研究,分析了Filippov系统中可能出现的四种余维-1sliding分岔并给出数值模拟.分析表明:该系统具有极其丰富的sliding分叉现象,较小的激励频率易引起非光滑分岔现象.

  • 标签: 非光滑系统 余维-1sliding分岔 Filippov系统