简介:考虑了高架索的倾斜角、货物悬挂点张力周期波动等因素的影响,建立了海上横向干货补给高架索系统面内振动的3自由度动力学模型.对模型进行1阶Galerkin模态截断,对离散后的动力学模型惯性项解耦,得到了高架索面内振动的3自由度常微分形式的非线动力学模型.借助Mathematica程序,对系统进行数值分析,研究表明货物摆动会引起高架索和货物大幅横向的振动.
简介:随着航空航天事业的发展,对各种材料性能的要求也越来越高.而蜂窝夹层板在结构和性能上具有许多优点,已在航空航天等领域应用广泛,并在一些重要结构中充当承力部件,但由于其特殊的蜂窝结构,相对于一般的板,在受力时会发生比较大的变形,所以用非线性理论研究蜂窝夹层板结构,并考察不同参数对非线性振动特性的影响,具有重要的理论和实际意义.如今,蜂窝夹层板的几何非线性问题已引起更多学者的关注.在一般均质理论的假设下,一些学者已经研究了各项同性蜂窝夹层板板的非线性动力学特性.研究了一类受面内激励和横向外激励联合作用下的四边简支蜂窝夹层板在主参数共振-1:2内共振时的双Hopf分叉问题.首先利用多尺度法得到系统的平均方程,然后结合分叉理论得到了系统的分叉响应方程,根据对分叉响应方程的分析,得到了六种不同的分叉响应曲线并给出了系统产生双Hopf分叉的条件.利用数值方法得到系统在参数平面的分叉集,通过对不同分叉区域的分析发现,随着参数的变化系统平衡点会分叉为两类周期解,随后周期解会通过广义静态分叉为准周期解,或者通过广义Hopf分叉为3D环面.
简介:在一类高维映射中实现了由Iooss等人提出的映射不变圈的算法.首先分析了不变圈的分岔条件,然后通过Fredholm择一方法分析了在计算不变圈过程中出现的一类方程解的存在性,再根据不变圈上映射到自身的不变性,通过分析振幅各阶项的系数,最终在一高维映射中实现了不变圈的计算。
简介:提出求解一阶Lagrange力学逆问题的新途径;给出由一阶微分方程直接构造Lagrange函数的基本解法,以及几种与不同的补充条件相对应的特殊解法.举例说明所得结果的应用.
简介:在Goodwin与Puu的宏观经济思想基础上,得到了一个推广的非线性动力学经济周期系统.首先用数值方法研究了此系统在特定参数条件下的全局分岔行为.然后结合最大Lyapunov指数,详细讨论了系统在分岔过程中动力学特征的转变.通过分析分岔图形发现在某些参数区间内倍周期分岔导致了混沌;在混沌区域内嵌有多个周期窗口;"加速数"值的增加可以促进经济的周期性运动.最后介绍了分岔和混沌分析得到的动力学性质对理解经济波动的应用.
简介:针对一类混沌系统,研究了参数未知的混沌系统的广义同步.基于lyapunov稳定性定理和自适应控制方法,给出了自适应控制器和参数自适应律的解析表达式.将该方法应用于参数未知的新混沌系统,理论证明了该方法可以使新混沌系统达到渐近的广义同步,并且可以辨识出系统的未知参数.数值模拟进一步证明了该方法的有效性.
简介:提出力学系统Lagrange函数和第一积分之间存在一种新关联,在此基础上给出变分法逆问题的一种新的直接解法.证明系统Lagrange函数可以由带修正因子的第一积分构成,导出修正因子应满足的偏微分方程,运用此解法构建不同系统的Lagrange函数和函数族,并讨论新解法的特点.
简介:非线性输出频率响应函数是由Voherra级数发展而来的一个新概念.对一类具有反对称阻尼特性的隔振器,通过该概念推导出了振动传递性与系统非线性参数之间的显式解析关系;进而系统地研究了非线性阻尼参数对隔振器的力传递性能和位移传递性能的影响.研究结果表明,虽然非线性隔振器在受正弦信号激励下会出现高次倍频分量,但对于其传递性能的评估仍可简单地通过系统输入和输出信号的基频分量之间的关系来衡量;另外,反对称非线性阻尼能够有效地抑制隔振器在共振区的力传递性和位移传递性,而在非共振区则基本无抑制效果.研究结果对于具有反对称阻尼特性的隔振器的分析与设计具有重要意义.