简介:为了能够对鱼塘、河流的水质进行长时间的在线监测,本文设计了一款在线式多参数水质监测系统.该系统具有灵活多变的传感器接入能力及数据融合性能,可以实时跟踪水质参数的变化、追踪污染源、辅助渔民养殖.系统以STM32F103为核心处理器,包括传感器及数据处理电路,通过RS485/MODBUS协议与PC进行通讯.采集的水质参数包括温度、pH、ORP、电导率、水位等五个常用基本参数.
简介:本文通过化学分析法、火花源原子发射光谱法以及电感耦合等离子体原子发射光谱法(ICP-AES)等这几种常用于金属材料化学成分的检测方法,对金属材料中铬含量的检测进行了大量实验,并结合实验数据分析,系统阐述了这几种分析方法在具体的检验实践中,测定金属材料中铬成分时的应用差异以及应关注的技术要点。
简介:在考虑客户满意度和生产过程中不确定性因素前提下研究了混装线投产排序问题.以三角模糊数表示加工时间、六点模糊数表示完工时间,建立了基于交货期的客户满意度评价方法.并进一步以满意度为优化目标,结合模糊不确定因素,建立了混装线投产排序问题数学模型,并通过遗传算法进行求解.最后,通过数据实例分析了客户满意度与完工时间的相互影响,主要从三个角度对结果进行分析:(1)最小生产单元MPS(MinimumProductSet)内产品比例的均衡性对客户满意度和模糊完工时间的影响;(2)MPS内产品比例相同的条件下,模糊交货期区间权重比例对客户满意度的影响;(3)相同条件下,客户满意度和模糊完工时间分别作为优化目标时两者之间的差异.从而验证了该模型的有效性.
简介:域自适应算法是一种能有效解决训练集(源域)和测试集(目标域)样本分布不一样但是具有相关性的方法.文章提出一个跨领域分布适配超限学习机(DDM-ELM)用于解决域自适应问题.DDM-ELM旨在基于超限学习机的框架下,充分利用丰富的有标签源域样本和无标签目标域样本,得出一个精确的目标域分类器.具体来说,DDM-ELM同时满足以下目标:1)最小化源域样本的分类误差;2)通过最小化投影最大化均值偏差来有效减小源域和目标域的分布差距;3)利用目标域样本的流形正则化来探索目标域样本的几何机构特性.这使得DDM-ELM能在同时继承超限学习机优点的前提下更加适合于目标域样本.经过大量的实验结果证明,相比于几种先进的域自适应方法,DDM-ELM在分类准确率和效率上均有所提高.