简介:针对单一特征步态识别率低的问题,提出一种将步态能量图(GaitEnergyImage,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步态能量图,并从中分割出动态部分.然后,利用Gabor小波从步态能量图的动态部分中提取不同角度的信息,将两步态特征融合在一起,对融合后得到的特征向量用改进的KPCA方法进行降维.最后,将降维后的融合特征向量输入到基于多分类的支持向量机(SupportVectorMachine,SVM)中,从而完成步态的分类和识别.经过在中国科学院自动化研究所CASIA步态数据库上进行实验,取得了很好的识别效果,实验结果表明,与单一特征的步态识别方法相比,融合后算法的识别率提高了约10%.
简介:道路目标检测在智慧城市建设中扮演着重要角色,而Faster-RCNN是目前主流的目标检测网络结构算法.本文在Faster-RCNN卷积神经网络结构基础上增加了特征金字塔网络层,并采用关注损失函数替代了原有的交叉熵损失函数.其中增加的特征金字塔特征融合层可以提取到检测图片中更具鲁棒性和一般性的前背景特征,而通过关注损失函数则能起到缓解检测图片中的正负样本不均的情况.最后,在公开数据集KITTI上实验证实,改进的目标检测算法能实现提高原有的Faster-RCNN目标检测准确率.
简介:本文报道了产于福建省南日岛的红毛菜(Bengia)的主要营养成分,发现此处采集的新鲜红毛菜脂肪中含有大量高度不饱和脂肪酸EPA(Eicosapentaenoicacid二十碳五烯酸),经测定每100克干重的红毛菜中含有,137mgEPA,在红毛菜脂肪酸组成中EPA含量占40%以上。每100克干的红毛菜中EPA含量比产于日本宫城县女川町的红藻(Fudaraku,Pachymeniopsislanceolata)的EPA含量高90mg,是目前报道的EPA含量最高的天然水产品之一,是EPA含量最高的藻类生物。
简介:用NH3-TPD、CO2-TPD和了PR方法表征了乙醇一步合成乙酸乙酯时混合氧化物催化剂物种和还原特性。结果表明,催化剂表面同时存在酸中心和碱中心,在Cu/ZnO/CoO/Al2O3催化剂体系中添加TiO2和ZrO2或以NiO代替CoO,导致NH3-TPD和CO2-TPD谱的变化,TPR谱的还原峰温度大大降低并由一个还原峰分裂为二个还原峰,这些变化已被反应动力学数据证实是有利于催化性能的提高。
简介:在无线电综合测试仪的设计中,频谱扫描是一项基础技术.将需要扫描的频谱划分成子带,进而提出了一种通过在模拟前端采用可变频率本振的混频器和低通滤波器实现子带信号分离,然后对子带信号进行采样并且变换到频域,最后将所有子带频谱拼接获得完整频谱的技术.为了实现该技术,设计了一个由软件无线电(Software-definedRadio,SDR)接收机和数字信号处理片上系统(SystemonChip,SOC)组成的软件无线电平台.随后,在基于该平台实现的综测仪原型上对频谱分析技术进行了验证.仿真和实验表明,该方法和原型样机能够对0~6GHz范围的频谱进行扫描,同时具有较低的噪声水平和较好的动态范围,且能够提供相位谱,因而适用于嵌入式频谱仪和无线电综测仪的应用场合.
简介:LDA主题模型是文本挖掘领域的重要算法,同时在推荐系统当中也有不错的表现.通过LDA主题模型挖掘用户感兴趣的主题,是目前最常用的用户兴趣主题挖掘方法之一.为了提高LDA主题模型应用在推荐系统时的推荐质量,我们提出了一种基于负样本进行学习的方法negLDA.通过创造出负样本来学习用户对物品的负面预测评分,同时结合正样本学习得到的正面预测评分,从正反两个方面进行综合评测,从而更加精确地衡量出用户对物品的预测评分.通过在MoviesLens-100k、MovieLens-1M、FilmTrust这三个数据集上的实验,表明所提出的算法在精确率、召回率、AUC三个指标上相比传统算法均有一定改进.
简介:惯性导航系统是目前室内定位和导航领域一项非常重要的技术,但是传统惯性导航系统中是利用算法融合地磁罗盘及陀螺仪等数据,进而提高相对位置的精度,但却无法修正已经产生的误差.所以传统惯性导航系统在内部构造复杂的室内很容易出现走错房间,穿越墙体等错误路径.为了解决这些问题,提出一种基于维特比算法的室内导航方法,利用自建室内地磁数字地图结合维特比算法,动态计算可能路径.利用维特比算法特性提高了输出路径的纠错能力,可有效排除错误路径的干扰.本导航方法能有效避免穿墙错误路径的出现,更加符合实际行走路径.试验结果表明,相对传统惯性导航系统,它在复杂室内环境下进入正确房间的准确率提高了23%.