简介:作为一个保边去噪的算法,各向异性扩散滤波(anisotropicdiffusionfilter,ADF)被广泛应用于磁共振成像(magneticresonanceimage,MRI)图像的预处理中,且对MRI图像中的莱斯噪声具有很好的去除效果.各向异性扩散滤波参数的选择对于其去噪性能影响很大,为找出滤波器的最佳参数,我们用改进的遗传算法对其进行参数优化,并且采用了一种新的精英选择策略,而且还在交叉和变异过程中采用了自适应的交叉和变异概率,再分别对各向异性扩散滤波的迭代次数t、扩散阈值k以及时间步长λ等三个参数进行选择优化.最后,从峰值信噪比(peaksignal-to-noiseratio,PSNR)、结构相似性指数(structuralsimilarityindexmetric,SSIM)、均方差(meansquarederror,MSE)三个方面,将经过参数优化的各向异性扩散滤波器对脑部MRI进行去噪处理,并与其它参数下的滤波结果进行对比.实验结果表明,经过参数优化的各向异性滤波器,无论是从视觉上还是相关评价指标上,均优于其它参数情况下的去噪效果.
简介:软件的图形用户界面(GUI)的视觉设计影响着用户的使用体验.在没有既定标准的情况下,测试人员对GUI评分的主观性和大量的重复性工作,会造成GUI测试的评分偏差和效率低下.针对上述问题,本研究工作构建了基于云平台的软件GUI自动测试系统,分别使用HOG+SVM模型和AlexNet模型对GUI图像进行特征提取并分类.考虑到软件GUI数据样本量小,提出利用迁移学习策略改善AlexNet网络的性能.针对用户的多样性和算法对计算性能的需求,GUI自动测试系统部署在云平台上,用户可以对软件GUI进行实时评估.实验证明,系统用于GUI自动测试具有良好的性能,并且可以避免主观因素的影响以及减轻软件测试员的工作量.
简介:域自适应算法是一种能有效解决训练集(源域)和测试集(目标域)样本分布不一样但是具有相关性的方法.文章提出一个跨领域分布适配超限学习机(DDM-ELM)用于解决域自适应问题.DDM-ELM旨在基于超限学习机的框架下,充分利用丰富的有标签源域样本和无标签目标域样本,得出一个精确的目标域分类器.具体来说,DDM-ELM同时满足以下目标:1)最小化源域样本的分类误差;2)通过最小化投影最大化均值偏差来有效减小源域和目标域的分布差距;3)利用目标域样本的流形正则化来探索目标域样本的几何机构特性.这使得DDM-ELM能在同时继承超限学习机优点的前提下更加适合于目标域样本.经过大量的实验结果证明,相比于几种先进的域自适应方法,DDM-ELM在分类准确率和效率上均有所提高.
简介:为解决工业机器人标定中存在的成本昂贵、专业性强等问题,提出了一种基于几何约束的工业机器人运动学参数闭环标定法.首先采用D—H模型与MDH模型相结合的方法建立运动学模型.解决D-H模型的奇异性问题.其次,用Matlab对该方法进行仿真,机器人末端执行器上模拟安装一个激光器,将激光瞄准观测平面上一正方形的四个顶点,得到较精确的关节角.最后,根据正方形的几何性质建立标定方程,利用最小二乘法求解参数误差.此方法操作简单,成本低,易于测量,可避免机器人基座标系的校准工作.根据仿真结果。工业机器人绝对定位精度提高了77.87%,从而验证了该方法的有效性.
简介:Inductivelycoupledplasmaatomicemissionspectroscopy(ICP-AES),pioneeredbyVAFasselandSGreenfieldwiththeinspirationfromReed,isoneofthemostexcitingdevelopmentsinanalyticalinstrumentationsince1960’s.Itcandetermineabout70elementsontheperiodictablewithbetterprecisionandequalorbettersensitivitythanthatobtainedwithflameatomicabsorptionspectrometry(FAAS).Inaddition,certain"difficult"elementsforFAAS,suchasAl,B,C,P,SandTi,etc.,canbeeasilydeterminedbyICP.TheICPisnotonlyaveryusefulexcitatiomsourceforAES,butalsoaveryusefulsourceforatomizationinatomicfluorescencespectrometry(AFS)andforionizationinatomicmassspectrometry(MS).Thislecturedeals
简介:医学影像是癌症早期检测的一个重要方式.现提出一种基于更快速区域卷积神经网络(FasterRCNN)的癌症影像检测方法,通过添加拉普拉斯卷积层锐化结节边缘、突出结节轮廓,修改锚框大小,调试超参数提高了检测效果.该方法在保证精度的情况下,提高了诊断效率,为计算机辅助诊断提供了参考.
简介:本研究建立了紫外-可见分光光度法测定肉苁蓉中多酚类物质(以没食子酸计)含量的方法。当乙醇浓度为70%、温度为60℃、提取时间为30min、料液比为1:20时,肉苁蓉中多酚类物质(以没食子酸计)的提取效果最好。同时肉苁蓉样品中多酚类物质(以没食子酸计)的平均质量百分比为0.2422%。精密度、稳定性和加标回收结果显示该方法可行可靠。