简介:在综合考虑沉积微相和成岩作用对储集层孔隙度影响的基础上,建立了辽河坳陷双清地区不同沉积微相成岩指数ⅠD与储集层平均孔隙度的相关关系,预测了该地区沙四段储集层在各沉积时期的平均孔隙度,恢复了孔隙演化史,确定了不同沉积时期有效油气储集层的分布范围。孔隙度预测结果表明,有效油、气储集层分布于研究区北部孔隙度大于5.8%的地区。孔隙演化史的模拟结果表明,储集层孔隙度在埋藏早期主要受沉积相的影响,而在晚期则主要受成岩作用的控制。储集层预测孔隙度与实测孔隙度的绝对误差为2.7%,而研究区储集层的填隙物含量在1.0%-40.0%之间,平均为21.7%,由此可见,所建预测模型可用于填隙物含量较高的储集层钻前孔隙度预测和孔隙演化史模拟。
简介:通过对青藏高原东北部共和盆地典型古土壤一风成砂剖面的释光(OSL)年代测定和沉积物中微量元素的分析,重建了区域全新世千年尺度的气候变化过程。研究表明,除Co、Rb、Sr和Ba以外的12种微量元素所反映的气候变化规律较显著,其含量变化曲线上的峰值段对应于古土壤层而谷值段对应于风成砂层,这一现象可作为气候暖湿、冷干波动的标志;区域金新世气候变化可分为以下阶段:11.8—10.0ka气候寒冷干燥,10.0~9.2ka气候逐渐趋于暖湿,9.2~4.6ka气候相对冷干,4.6~0.7ka气候相对暖湿,0.7ka以来气候明显寒冷干燥;区域全新世气候变化中存在8次寒冷事件,与青藏高原和北大西洋揭示的寒冷期具有明显的对应关系,表明共和盆地千年尺度的气候变化与全球气候变化具有一致性。
简介:两种气体,氮气和氧气,以压倒优势的状态主导着地球的大气圈。氮气是原生的,而且其存在和丰度不是生物过程所驱动的;相反,氧气是生物通过水的氧化作用而连续产生的,这个氧化作用得到了太阳光的能量驱动。氧气,一种对动物生命进化最为关键的气体,是如何变成大气圈中丰度第2的气体?问题并非以前所设想的那么简单;为了了解大气圈氧化的时间进程,我们不但要知道氧气是什么时候而且是如何第1次出现的,而且还要知道氧气是如何在大气圈中保持一个高浓度的。可以肯定的2个事实是:地球最早期的大气圈是缺乏氧气的,而今天的大气圈则为21%的氧气所组成。需要特别强调的是,大多数古代大气圈氧气水平的地质标志,只是意味着存在与缺乏,而且发生在以下2个时间点的大多数事件是高度不肯定的;但是,一系列地质证据已经表明,大气圈氧气含量水平上升的时间进程发生在2个时间点上:(1)一个从缺氧的到含氧的大气圈的转变,大致发生在2.0-2.5Ga期间,这个转变就是著名的巨型氧化作用事件(GOE);(2)发生在前寒武纪—寒武纪过渡时期的大约540-850Ma的第2次巨型氧化作用事件(GOE-Ⅱ),被进一步命名为新元古代氧化作用事件(NOE)。GOE与NOE,就得出了地球大气圈氧气含量水平上升三段式的盛行图像。随着研究的深入,得到了以下重要认识:如果说大气圈氧气含量的总体增加,从太古宙微不足道的水平增加到今天21%,是由于氧气生产作用增强的结果而代表了一个复杂的地球生物学过程的话,那么,这个过程则发生在随着侵蚀作用与沉积作用相对于火山活动而变得更加重要的状况下,更进一步讲,叠加在这个总体趋势下的则是一系列的阶梯式的氧气含量水平上升,这与超大陆聚合作用之后异常高的沉积作用周期是相联系的,从而进一步说明了大气圈