简介:运用水热法合成了1个新的配合物[Ni(Phtpy)2](CH3COO)2(化合物1),(Phtpy=4′-苯基-2,2′∶6′,2″-三联吡啶),并通过X-射线单晶衍射方法确定了该化合物的晶体结构.结构分析表明化合物1属于三斜晶系,P-1空间群,晶胞参数a=0.90560(8)nm,b=1.10307(9)nm,c=2.02014(15)nm,α=94.3830(10)°,β=100.9830(10)°,γ=106.3120(10)°,V=1.8831(3)nm3,Z=2,R1=0.0872,wR2=0.1831.配合物中存在3种氢键和多种π-π相互作用,使其成为一个3D配合物.
简介:采用两种密度泛函方法和两种有效核势基组对中性不饱和三核钌羰基化合物Ru3(CO)n(n=11,10,9)的三态异构体进行理论计算,优化出8个稳定异构体.研究发现,三态异构体中带有多个非端羰基的异构体能量较低.对同一分子的三态异构体,所含非端羰基数目越多,则能量也越低.
简介:采用对称性破损态方法结合密度泛函理论,选用反铁磁双核配合物[Cu2(MMBPT)2Cl4(H2O)2.5](MMBPT=3-甲基-4-对甲基苯基-5-(2-吡啶)-1,2,4-三唑)作为研究对象,通过与实验数据相比较,探讨了不同密度泛函方法与基组对计算铜配合物交换耦合常数的准确度.结果表明,4种混合密度泛函DFT(B3LYP,B3P86,B3PW91和PBE0)的计算结果都能和实验所观察到的值-31cm-1符号一致,但只有B3PW91方法得到的结果和实验结果吻合程度最好,同时采用方法B3PW91方法计算所得的交换耦合常数Jab对基组的依赖性较大.研究表明,2个Cu(Ⅱ)离子之间弱的反铁磁相互作用主要源于单占据分子轨道SOMOs小的能量劈裂.
简介:建立了离子色谱-直接电导检测法同时测定离子液体中三氟乙酸根、四氟硼酸根和三氟甲烷磺酸根的方法。色谱分离采用Shim-packIC-A3阴离子交换色谱柱和邻苯二甲酸氢钾淋洗液。最佳色谱条件为:以邻苯二甲酸氢钾(1.2mmol/L)为淋洗液,柱温30℃,流速1.0mL/min。在此条件下,所测阴离子的检出限(S/N=3)为0.06~3.07mg/L,保留时间和峰面积的相对标准偏差(n=5)分别不大于0.18%和1.62%。用来测定离子液体中三氟乙酸根、四氟硼酸根和三氟甲烷磺酸根,加标回收率为98.2%~101.8%,能够满足离子液体中的三氟乙酸根、四氟硼酸根和三氟甲烷磺酸根定量分析要求。
简介:建立了氢还原重量法测定三氯化钌产品大样中钌含量的新方法,研究并优化了测定条件,结合原子吸收光谱法(AAS)、电感耦合等离子体原子发射光谱法(ICP-AES)和氯化铵纯度考察了杂质元素对了分析结果的误差影响.结果表明,钌含量为0.3~0.6g的三氯化钌与5~7g氯化铵能完全形成(NH4)2RuCl6配合物,于约100℃烘干水分、350℃分解铵盐、750℃氢还原为海绵钌和105℃干燥水气的条件下,测定3.94%,5.88%,7.32%,9.47%,10.84%和12.93%含量的钌,极差、标准偏差(S)、相对标准偏差(RSD,n=22)和重复性限(r)分别为±0.01%,0.0030%~0.0050%,0.0369%~0.0761%和0.008%~0.014%.样品加标回收率99.96%~99.98%.方法的结果准确,精密度好,且与YS/T562-2009标准分析方法的吻合.
简介:选取8个典型的二价金属卟啉MP(M=Ca,Mg,Zn,Cu,Ni,Fe,Co,Mn)与三聚氰胺(L)形成轴向金属配合物(L-MP),应用概念密度泛函工具,系统地计算和比较了L键合前后对其结构和反应性质的影响.结果表明:除钙的特别不稳定物外,L配体对其余6种MP的结构影响较小,它们有较高的化学势指数和较低的总化学硬度而趋向配体的解离;与铁卟啉能形成最稳定的轴向配合物,电子由配体N原子流向铁,中心铁的亲核Fukui指数值大于体系里其他原子的Fukui指数,且发生符号改变.在这些典型的赤道键合配合物中,金属M、配体N之间的二级微扰相互作用能,自然电荷布局以及概念密度泛函指数等方面,存在着一系列线性关系.以上结果可为体内三聚氰胺致结石提供新的启示.
简介:利用MP2和mPWPW91方法,在6-311G**和6-311++G**基组水平上研究了RDX分别与硝基、氨基和迭氮基取代的氮杂杯[2]-间-芳烃[2]三嗪和氮杂杯[2]-对-芳烃[2]三嗪形成的分子间氢键相互作用,并借助自然键轨道(NBO)和分子中的原子(AIM)理论揭示了氢键的本质.结果表明,氮杂杯[2]-间-芳烃[2]三嗪复合物中氢键主要发生在RDX与三嗪环及其取代基之间;氮杂杯[2]-对-芳烃[2]三嗪复合物中氢键主要发生在RDX与杯芳烃环及其取代基之间.分子间相互作用能在-18.82--40.62kJ/mol之间;经基组叠加误差(BSSE)校正后,相互作用能顺序为e〉f≈b〉a〉c〉d和e′〉b′〉f′〉a′〉d′〉c′.两类复合物中,氨基取代的复合物分子间氢键强于硝基或叠氮基复合物分子间氢键,氨基氮杂杯[2]-对-芳烃[2]三嗪与RDX形成的氢键最强,有望作为降低火炸药感度、进行火炸药废水处理的候选物.为获得稳定性较强的RDX-氨基氮杂杯芳烃超分子炸药,应该选取介电常数较大的溶剂.