简介:大视角图像匹配算法的鲁棒性与实时性直接影响飞行器对远距离目标定位的性能。针对目前仿射不变图像匹配算法实时性较差的问题,提出一种惯性信息辅助的快速大视角图像匹配方法。该方法对现有的快速图像匹配算法进行改进,避免了构建高斯金字塔,提高了算法效率。然后利用机载惯性导航信息求解实时图与参考图之间的单应性矩阵,并对实时图进行模拟视角变换以此减小图像间视角差异,克服了现有的大视角图像匹配算法盲目多次的匹配计算,实现了大视角图像的快速匹配。实验结果表明,惯性信息辅助的大视角图像匹配算法与现有的快速仿射不变性匹配算法相比,匹配效率提高了至少2倍。
简介:针对单一图像源下目标跟踪精度不高的问题,利用跟踪状态下的目标存在于可见光与红外图像中的特征对连续自适应均值移动跟踪算法做出改进。首先选取可见光图像的“颜色梯度背投影”作为改进的目标模型,选取红外图像的“灰度梯度背投影”作为改进的目标模型;然后根据可见光序列图像和红外序列图像各自进行连续自适应均值移动跟踪算法得到的对应的口‘系数判定两种图像跟踪的效果,对两种图像的权重进行自适应调整,得到这两种图像的特征级融合图像和跟踪结果。实验结果表明,对于320像素×240像素的可见光和红外图像,基于可见光与红外图像特征融合的目标跟踪算法在复杂背景下能够较准确的跟踪目标,目标跟踪精度为0.5像素,跟踪速度为30~32ms/帧。