学科分类
/ 5
90 个结果
  • 简介:传统地形辅助导航适配区选择主要根据某一个地形特征参数的大小决定,因此不可避免地存在对地形适配性评判的不全面性。为了克服传统方法的缺点,提出了一种基于熵值法权灰色关联决策的地形辅助导航适配区选择方法,该方法综合考虑了地形标准差、粗糙度、地形高度熵及相关系数对适配区选择的影响。首先,利用计算得到的各特征参数值构建灰色决策矩阵;其次,对决策矩阵进行极差变换以及归一化处理得到灰色关联判断矩阵;最后,采用熵值权法客观计算各决策属性的权重,得到地形适配性综合评价指标。仿真结果表明,在评价值高的区域进行地形辅助导航,其匹配误差将更小。

  • 标签: 地形辅助导航 地形信息量 适配区 熵值法赋权 灰色关联决策
  • 简介:针对非合作航天器的相对导航问题,提出了一种利用点矩形面特征测量非合作航天器位姿的方法。首先从点数据中提取矩形面;然后根据矩形面点数据计算出点分布矩阵,通过特征值分解求出相对位置和姿态,并解决了因矩形面对称而产生的多解问题;最后设计了卡尔曼滤波器,确定目标星与追踪星的相对位置参数以及目标星的姿态、角速度。仿真结果表明:相对位置的估计精度优于0.005m,目标星姿态精度优于0.1°,验证了该方法的有效性。

  • 标签: 非合作航天器 点云 矩形面特征 位姿测量
  • 简介:空间稳定系统是高精度长航时导航技术的关键,快速对准是其工程应用的重要功能之一。研究了基于位置和速度观测的系统快速对准方法。基于Wahba定姿原理设计平台姿态角的粗估计算法,研究了系统水平通道误差模型的短时可观测性,并据此设计一个可实时估计平台失准角初值、水平位置和速度误差的7维精对准Kalman滤波器。计算机仿真和动态试验结果表明,所述快速对准方法可估计较大的平台失准角(3°量级),同时适用于系泊和海上应急启动情况;在动态条件下精对准2h,精度即满足指标要求,具有较强的工程应用价值。

  • 标签: 空间稳定系统 快速对准 位置和速度观测 KALMAN滤波
  • 简介:针对风场对临近空间伪卫星导航精度影响的问题,提出伪卫星抗风场干扰自主导航算法,以提高伪卫星的导航精度。首先,将风场模型加入伪卫星SINS/CNS/SAR组合导航的量测模型中,建立风场干扰下的SINS/CNS/SAR组合导航系统模型;然后,设计自适应UPF非线性滤波算法,将该算法用于SINS/CNS/SAR组合导航解算中,分别在考虑风场干扰和不考虑风场干扰的情况下,利用UKF、UPF和自适应UPF算法对临近空间伪卫星组合导航系统误差进行估计。仿真结果表明,在考虑风场干扰的条件下,提出的自适应UPF算法在东向、北向和天向的速度误差均控制在±0.21m/s以内,误差大小分别是现有的UKF和UPF的1/5和1/3。该算法能有效抑制风场对导航解算精度的影响,提高伪卫星的定位精度。

  • 标签: 临近空间 伪卫星 组合导航 风场估计 自适应UPF算法
  • 简介:为提高空间稳定惯性导航系统的姿态精度,利用姿态误差进行系统级参数标定和校准。首先,给出了姿态误差模型,考虑陀螺漂移、加速度计误差、壳体翻滚失准角、安装误差和框架角零偏的影响;接着,利用姿态误差模型进行可辨识性讨论和分析,总结出分离的参数和标定方法,并据此设计试验方案。获得姿态误差后,结合最小二乘法和姿态误差模型进行系统级参数标定和校准,结果表明,参数标定误差小于15%的姿态精度指标,校准后,纵横摇角和航向角精度提高了60%和40%。

  • 标签: 姿态 误差分析 参数标校 惯性导航系统
  • 简介:针对自由漂浮状态下的空间机械臂系统,研究了基座姿态扰动最小的轨迹规划问题。首先通过正弦函数参数化机械臂各个关节,在机械臂关节角速度、角加速度以及基座姿态变化范围受限的约束条件下,定义了基座姿态扰动最小的目标函数,然后提出了基于混沌粒子群算法的轨迹优化策略,并给出了具体求解步骤。数值算例结果表明,在满足系统的约束条件下,机械臂关节变化平缓,不存在角速度突变的情况,并且比标准粒子群算法具有更快的收敛速度,在优化轨迹下进行运动仿真,结果表明终止时刻基座姿态扰动为1.3708°(三轴合成),而梯形规划的姿态扰动为8.5459°,优化后使得姿态的扰动减小84%,从而说明所提出的算法能够有效减小机械臂运动对基座姿态的扰动。

  • 标签: 空间机械臂 轨迹规划 混沌粒子群优化算法 优化
  • 简介:─—本文推导了空间运输系统中航天飞机轨道飞行段,利用天文-惯性组合姿态参考系统中的星体跟踪器跟踪预选导航星,对航天飞机的姿态,即航天飞机惯性导航系统的三轴姿态偏差进行修正的公式。并提供了一种新型的适合于空间运输系统的CID(ChargeInjectDevice)星体跟踪器原理样机,论述了其工作原理,关键技术及性能参数。

  • 标签: 星体跟踪器 参考系统 空间运输 惯性导航系统 导航星 组合导航系统
  • 简介:Schuler振荡阻尼技术是提高惯导长期工作精度的关键技术之一。针对采用低阶阻尼网络的惯导系统抑制高频和低频参考速度误差难以兼顾的问题,基于互补滤波思想,提出一种高阶水平阻尼网络设计方法。将两个采用低阶网络、分别具有优良高频和低频特性的Schuler回路通过一对互补滤波器进行组合,形成双Schuler回路组合系统。它等效于采用某高阶网络的单Schuler回路,该回路对高频和低频参考速度误差的衰减率可同时达到40dB/10deg或更高。计算机仿真和海上试验结果均表明:采用所设计高阶网络的系统对参考速度误差兼有优良的高频和低频滤波特性,综合滤波性能优于采用低阶阻尼网络的系统,具有工程应用价值。

  • 标签: 互补滤波 水平阻尼 Schuler振荡 惯性导航系统
  • 简介:为实现网络差分系统的高精度差分定位,利用虚拟参考站技术提出一种网络RTK差分改正信息的生成方法。利用VRS技术建模生成了虚拟参考站的双频伪距观测值、双频载波相位观测值,重点推导了关键的载波相位数据项参数的算法公式,遵循RTCM2.3国际标准协议编码生成了RTCM3、RTCM18、RTCM19号差分改正电文,通过同步实验的方法与标准RTCM相应的主要参数进行了数值对比。实验表明,该方法生成的差分改正信息主要数据项与标准值的误差小于0.04cycle,当被用于GPS网络差分定位时,移动站的平面精度优于5cm.

  • 标签: 虚拟参考站 网络RTK RTCM 网络差分
  • 简介:在干扰大的外界环境中,传统滤波法对组合导航系统进行状态估计的精度难以满足要求,为此提出了引入Elman神经网络.描述了它的状态估计的设计方法,对如何获取训练样本及网络的训练算法给予了详细的介绍,并把优化后的算法与原有方法进行仿真对比.最后以INS/GPS组合导航系统为例,分别用传统滤波法与Elman神经网络法进行状态估计.仿真结果证明了该法的有效性和实用性.

  • 标签: 组合导航系统 神经网络 卡尔曼滤波 状态估计
  • 简介:基于Krein空间的鲁棒Kalman滤波器与通过其它方法建立的鲁棒Kalman滤波器相比有较高稳态精度。文中将基于Krein空间的鲁棒Kalman滤波方法用于导弹捷联惯导系统动基座传递对准,并与标准Kalman滤波进行了比较。仿真结果表明,在垂直比力参数存在摄动的情况下,如果基于Krein空间的鲁棒Kalman滤波器的参数选取适当,它的精度鲁棒性优于标准Kalman滤波。

  • 标签: 鲁棒Kalman滤波 KALMAN滤波 捷联惯导系统 传递对准 动基座
  • 简介:临近空间高超声速飞行器具有速度快、突防能力强、杀伤力大等特点,是当今世界各军事强国新型武器的重点发展方向.其中,气动力和气动热是高超声速飞行器的两项重要指标,也是高超声速技术研究的重点内容.文章综述了国内外临近空间高超声速飞行器气动力及气动热研究现状,分析了研究的发展趋势,并分别从工程计算、数值仿真以及实验研究3个方面介绍了高超声速飞行器气动力及气动热的研究技术和方法.

  • 标签: 临近空间 高超声速飞行器 气动力 气动热
  • 简介:本文针对某型陀螺启动特性进行了试验研究,在陀螺启动漂移特性试验数据基础上,用神经网络建立了启动漂移速率温度的非线性模型,并对模型进行了检验,证实了神经网络的有效性

  • 标签: 陀螺仪 启动漂移特性 神经网络 非线性模型 学习算法
  • 简介:从模式识别的角度分析了搜索模式下水下运载体的重力匹配问题,利用模式识别神经网络实现重力匹配定位。在重力图匹配时,以惯性导航仪指示位置为中心规划真实位置的网格点搜索范围,从参考重力图上提取相应一系列的重力数据,与对应网格点的位置一起定义成多个模式类,构造相应的模式识别概率神经网络,运用该神经网络将实时重力测量数据识别到某个模式类,对比模式类的定义确定载体位置。在实测重力图上对重力辅助惯性导航系统进行了计算机仿真研究。结果表明,在重力场特征显著区域该重力匹配算法能够有效减小厄特弗斯效应的影响,其导航系统定位误差小于一个重力图网格,匹配率在80%以上,匹配效果优于一般的相关匹配算法。

  • 标签: 组合导航系统 惯性导航 重力 厄特弗斯效应
  • 简介:为了提高潜器导航定位精度,针对等值线算法在惯导系统初始误差较大时易发散的问题,提出基于概率神经网络调优的等值线改进方法。首先,在搜索区域内,利用概率神经网络算法对惯导系统航迹进行调优,并经过卡尔曼滤波器与惯导系统航迹进行信息融合形成待匹配航迹;在此基础上利用实时等值线算法得到最佳匹配位置。分别在不同初始条件下进行仿真分析,得出概率神经网络算法在大的初始误差下不易发散但定位精度不高的结论,然后在潜器行驶6h后,初始误差为5.438?的条件下进行仿真验证,结果表明,改进方法定位精度均值优于0.537?,从而证明改进方法是有效的,即使在大的初始误差下仍然能够达到较高的定位精度。

  • 标签: 辅助导航 重力梯度 概率神经网络算法 等值线算法 潜器
  • 简介:光纤陀螺(FOG)温度漂移误差是影响其输出精度的主要误差源之一。针对基于传统BP神经网络FOG温度误差补偿方案适用性较差的问题,提出了优化预测数据的BP神经网络补偿算法,利用最优线性平滑技术以及滑动平均技术对神经网络待补偿数据进行预处理,可以有效减小FOG输出白噪声对温度漂移网络模型补偿精度的干扰,优化神经网络模型的补偿效果。使用FOG温度漂移实测数据对所提出的优化算法进行验证,结果表明利用本文提出的两种建模及补偿方案进行补偿后的FOG温度漂移数据标准差相比传统BP神经网络补偿方法减少50%以上。

  • 标签: 光纤陀螺 温度漂移 补偿方案 BP神经网络 优化算法
  • 简介:开展了机器学习在翼型气动力计算和反设计方法中的应用研究,实现了在更大翼型空间范围内,人工神经网络的训练和优化,建立了翼型气动力计算模型,和给定目标压力分布的翼型反设计优化模型.作为机器学习领域兴起的研究热点,人工神经网络的研究工作不断深入,有研究者尝试将其应用于流体力学的学科范畴内.文章实现人工神经网络在翼型计算领域中应用的方法如下:首先通过Parsec参数化方法,围绕基准翼型构造了一定翼型空间范围的翼型库,利用XFOIL进行数值模拟,搭建了和翼型库具有一一映射关系的流场信息库.通过训练和优化神经网络,实现了基于此模型的快速、高可信度的翼型气动力预测,以及新型的翼型优化设计方法.通过自动化编程实现样本库的批量生成,实现了不同翼型空间的样本量下,神经网络的训练和优化过程.实验结果表明,在机器学习领域中,基于神经网络的翼型反设计模型的精确性高度依赖于训练样本量的大小和覆盖范围.

  • 标签: 神经网络 气动力 翼型反设计 PARSEC参数法 计算流体力学
  • 简介:针对系统误差的不确定性可能会引起滤波精度降低或发散的问题,提出一种新的基于模型预测滤波的前向神经网络算法。首先,采用模型预测滤波估计网络在正向传递过程中的模型误差,并对其进行修正,以弥补模型误差对隐含层权值更新的影响;然后,利用模型预测滤波为神经网络提供精确的训练样本,学习待估计系统的非线性关系。将提出的算法应用于SINS/CNS/BDS组合导航系统,并与扩展卡尔曼滤波进行比较,仿真结果表明,提出的算法得到的姿态误差、速度误差和位置误差分别在[-0.25′,+0.25′]、[-0.05m/s,+0.05m/s]和[-5m,+5m]以内,滤波性能明显优于扩展卡尔曼滤波算法,表明该算法提高组合导航定位的解算精度。

  • 标签: 前向神经网络 模型预测滤波 权值修正 SINS/CNS/BDS组合导航
  • 简介:针对GPS精密单点定位对高精度的需求,提出了一种采用小波神经网络的GPS精密单点定位解算方法。该方法利用小波变换和神经网络学习功能,无需准确系统先验信息,误差函数能够快速收敛,逼近真实误差模型,从而提高GPS精密单点定位精度。仿真结果表明,静态条件下与传统最小二乘法和卡尔曼滤波算法相比,该算法定位收敛时间缩短50%,定位精度分别提升90%和50%。动态情况下,较最小二乘法和卡尔曼滤波算法定位精度提高20%~80%。

  • 标签: GPS精密单点定位 小波变换 神经网络 收敛时间