简介:基于状态空间模型的许多传统滤波算法都基于Rn空间中的高斯分布模型,但当状态向量中包含角变量或方向变量时,难以达到理想的效果。针对J.T.Horwood等提出的nS?R流形上的GaussVonMises(GVM)多变量概率密度分布,扩展了狄拉克混合逼近方法,给出了联合分布的GVM逼近方法,推导了后验分布的GVM参数计算公式,设计了量测更新状态估计算法。将J.T.Horwood等的时间更新算法与所提出的量测更新算法相结合,可实现基于GVM分布的递推贝叶斯滤波器(GVMF)。仿真结果表明,当状态向量符合GVM概率分布模型时,GVMF对角变量的估计明显优于传统的扩展卡尔曼滤波器。
简介:基于Krein空间的鲁棒Kalman滤波器与通过其它方法建立的鲁棒Kalman滤波器相比有较高稳态精度。文中将基于Krein空间的鲁棒Kalman滤波方法用于导弹捷联惯导系统动基座传递对准,并与标准Kalman滤波进行了比较。仿真结果表明,在垂直比力参数存在摄动的情况下,如果基于Krein空间的鲁棒Kalman滤波器的参数选取适当,它的精度鲁棒性优于标准Kalman滤波。
简介:Unscented卡尔曼滤波(UKF)是一种新的非线性滤波算法,将其引入到GPS/DR系统的滤波中,并针对系统模型的特点对原UKF算法进行了简化,建立了新的滤波方法.仿真结果表明,同EKF相比,UKF的滤波精度和稳定性都显著提高了,还可避免计算烦琐的Jacobi矩阵,真正实现了低成本、高精度的导航定位要求.
简介:针对SAR图像匹配及定位需要耗用不等的计算时间而造成的量测不等间隔输出和量测信息滞后问题,提出一种新的SAR时延补偿算法。该算法在标准卡尔曼滤波(KF)基础上,当SAR有量测信息生成时,根据多模型方法进行量测预测,利用预测值修正SINS状态;而SAR无量测信息输出时,通过插值方法生成量测信息来改善系统滤波精度。仿真结果表明,采用基于多模型量测预测的KF算法可以将位置误差由45m减小到10m以内,航向角稳态误差值小于5.8";而在此基础上叠加插值预测算法可以将位置误差进一步控制在6m以内,航向角稳态误差小于4.7",证明了本文提出的算法能够有效补偿SAR的随机时延并提高组合导航系统的解算精度。