简介:开展了机器学习在翼型气动力计算和反设计方法中的应用研究,实现了在更大翼型空间范围内,人工神经网络的训练和优化,建立了翼型气动力计算模型,和给定目标压力分布的翼型反设计优化模型.作为机器学习领域兴起的研究热点,人工神经网络的研究工作不断深入,有研究者尝试将其应用于流体力学的学科范畴内.文章实现人工神经网络在翼型计算领域中应用的方法如下:首先通过Parsec参数化方法,围绕基准翼型构造了一定翼型空间范围的翼型库,利用XFOIL进行数值模拟,搭建了和翼型库具有一一映射关系的流场信息库.通过训练和优化神经网络,实现了基于此模型的快速、高可信度的翼型气动力预测,以及新型的翼型优化设计方法.通过自动化编程实现样本库的批量生成,实现了不同翼型空间的样本量下,神经网络的训练和优化过程.实验结果表明,在机器学习领域中,基于神经网络的翼型反设计模型的精确性高度依赖于训练样本量的大小和覆盖范围.
简介:以近空间尖前缘高超声速巡航飞行器的研制为背景,作者在前一阶段采用模型理论分析方法,陆续研究了沿微钝前缘驻点线的化学非平衡流动和气动加热相似律,文章是上述研究的综合回顾和深化讨论.稀薄条件下,驻点附近流动和传热出现一系列与连续流动模型不同的新特征,超出了经典气动热预测理论的适用范围.作者建立了一个沿驻点线能量传递和转化的广义模型,并分别推导了具有实际物理意义的边界层外离解非平衡流动判据和边界层内复合非平衡流动判据.基于这些判据构建了预测非平衡流动驻点气动加热的桥函数,并讨论了稀薄非平衡真实气体流动和气动加热的相似律,发现新型近空间尖前缘飞行器遭遇的气动热环境不同于传统大钝头航天器再入问题,传统的天地换算相似准则将会失效.这些理论分析结果可为稀薄非平衡化学反应流及气动加热的实验和计算提供一个标模检验的手段.
简介:针对传统压电型声矢量传感器无法兼顾小体积与高灵敏度的问题,利用MEMS电容加速度计作为拾振器,实现矢量传感器的小型化设计。首先采用机电类比分析的方法得到内置加速度计的刚硬球体的声致振动响应;然后进行硅微电容加速度计选型和参数分析、设定,并设计制作了一只二维球形矢量传感器样机;最后对样机进行了参数测试,结果表明两矢量通道均具有良好的方向性,声压灵敏度分别为?185dB和-186dB(1kHz,0dBref1V/μPa),通道间相位差与理论值保持一致,验证了利用MEMS电容加速度计设计矢量传感器的可行性。
简介:针对亚轨道可重复使用运载器(SRLV)的应用需求,在将卫星投送到预定轨道同时确保SRLV安全返回的前提下,对基于记忆原理的轨迹/总体参数一体化优化方法进行了研究。记忆优化算法是一种具有全局收敛性的随机搜索方法,每次搜索的试探解优劣状态由记忆元来存储。利用记忆原理的记忆增强和遗忘规律来衡量优化搜索过程中试探解的状态,并以燃料最省作为优化指标。同时采用三种不同的搜索策略,实现对试探解的随机搜索,避免陷入局部极小问题,并以此来提高搜索速度。仿真表明:卫星入轨速度偏差小于2m/s,高度偏差小于10m,轨道倾角偏差小于0.0001°。SRLV最终与着陆场的位置偏差小于100m,速度偏差小于5m/s。相较于传统的轨迹优化方法,新方法适用于复杂的轨迹/参数一体化优化问题,搜索速度快,求解精度高,有利于算法在工程实际中的应用与推广。
简介:基于传统小卫星对轨道和姿态参数确定采用分别计算的复杂模式,提出了一种利用地磁场和天文信息同时确定卫星轨道和姿态参数的新方法.首先通过分析小卫星轨道动力学J2模型和卫星姿态动力学模型,建立系统状态方程.其次将三轴磁强计与地磁场模型参考值的矢量作差,分析微分差值与状态变量的数学关系,建立定位/定姿观测方程.利用星敏感器提供的高精度姿态信息,建立定姿观测方程,同时利用星敏感器间接敏感地平观测折射恒星,建立定位观测方程.最后提出基于信息融合的先进滤波算法,并通过对多种导航模式进行数值仿真及结果分析,论证所设计一体化方法提高了系统定轨/定姿的精度和可靠性.