简介:针对星敏感器地平仪联合自主定轨算法在工程中不易应用及工程应用中定轨精度较低等问题,提出了一种改进的自主定轨算法。第一,调整算法观测量,利用惯性坐标系下地心矢量替代星光角距值作为Kalman滤波方程的观测量,以适应卫星星敏感器标准输出;第二,在算法中加入敏感器误差处理环节,包括对敏感器的常值误差进行求取,从而实现对地心矢量测量值的修正,以及用抗野值方法对尖峰噪声误差进行处理,从而消除尖峰噪声对Kalman滤波定轨算法的影响;第三,采用无迹Kalman滤波算法将具有新的观测量与敏感器误差处理环节的改进的天文导航算法加以实现。通过某在轨中轨道卫星数据校验表明,改进后的自主定轨算法定轨精度在千米量级,可在工程中有效实施。
简介:为了提高舰船惯性导航系统在动基座下的传递对准的精度和快速性,针对舰船平台的应用特点,采用卡尔曼滤波器对主、子惯导的“速度加角速率”参数的误差量进行滤波估计并进行了算法设计。运用卡尔曼滤波器的平滑算法改善传递对准的精度。针对卡尔曼滤波器平滑算法会降低对准速度的缺点,在只损失一小部分精度的前提下,创新性的采用卡尔曼滤波器的降阶算法提高了对准速度。通过Matlab软件对卡尔曼滤波器算法、卡尔曼滤波器平滑算法和卡尔曼滤波器平滑加降阶算法的速度误差和姿态误差分别进行了仿真。仿真结果表明,“速度加角速率”匹配传递对准改进算法具有稳健的对准精度和快速性,有一定工程应用参考价值。
简介:针对无人运载器的快速定向需求,提出北斗双天线基线连续旋转整周和0°-180°两位置的两种快速定向方法。把一对北斗天线安装在一个旋转机构上,使双天线基线绕旋转机构中心轴转动,改变北斗双天线基线方向,运用卫星载波相位双差模型,计算出载波相位双差的整周模糊度,进而获得双天线基线航向角,通过旋转机构角度输出值,得到载体的真实航向。采用自行研制的旋转试验装置,验证了北斗短基线双天线两种旋转定向方法。对于0.3m北斗短基线双天线,载体定向精度优于1°。当北斗双天线接收机能够接收到4颗卫星时,上述两种方法都能够确定真实航向。与商业OEM定向板卡相比,所提出的定向方法定向速度快,定向精度高。
简介:在双轴旋转式SINS中,惯性元件常值漂移误差对系统的影响可以得到调制,但安装误差和标度因数误差对系统的影响无法得到调制,同时这些误差会与旋转角速率耦合,引起速度锯齿波等误差从而降低了系统的各项性能指标。为了减少这种影响,分析了光学陀螺双轴旋转式SINS误差传播特性,利用奇异值分解法对系统的可观测程度进行了分析,经分析,与转动轴相关的安装误差和标度因数误差的可观测度较好,据此设计了系统的自主标定方案及滤波算法,进行了数字仿真和半实物仿真验证试验。试验结果表明,利用设计的自主标定方案,在1h内能估计出转轴上两个陀螺的标度因数误差及与转轴相关的四个安装误差,估计精度能达到95%以上。导航试验验证表明,利用自主标定的参数,相对于传统标定方法,使系统定位精度提高了20%。
简介:针对惯性器件输出噪声引起高精度机载POS(PositionandOrientationSystem)地面双位置对准精度较差的问题,提出基于小波滤波和隐马尔科夫建模的数据预处理方法结合自适应卡尔曼滤波的双位置对准方法。首先分析惯性敏感器原始信息的频率特性,利用小波滤波算法,消除惯性器件测量中的高频噪声;综合分析器件的随机游走特性,通过建立隐马尔科夫模型削弱惯性敏感器输出随机游走的影响;并针对降噪处理、电源波动及环境因素等引起的系统噪声统计规律不确定性问题,提出利用自适应卡尔曼滤波的方法实现POS高精度初始对准。试验结果表明,采用本文所提方法的对准结果,可使对准结束后600s纯捷联解算的水平速度误差由1.278m/s减小至0.6061m/s,水平位置误差由274.6m减小至128.2m,水平速度和位置误差均减小了50%左右。
简介:移动机器人的目标检测要求其对特定的静止或运动物体进行运动分析及检测。以Voyager-III移动机器人系统为研究对象,实现非理想光照下,对橘红色目标足球的运动检测。提出在传统三帧差分法基础上,先利用Markowitz投资组合模型进行足球目标的特征提取,将场地非感兴趣的目标中,出现全部像素值发生变化的目标去除,再进行图像帧间差分。利用CCD摄像机对比赛环境中足球的运动轨迹进行录制,选取具有代表性的各帧视频图像、Markowitz算法优化后的差分图像和跟踪图像,结果表明跟踪图像不含非目标物的干扰,克服了差分图像存在空洞的问题,为移动机器人提供了一种实用的运动目标检测方法。
简介:利用单频GPS载波相位差分技术进行动态精密测量时,由于观测历元少,经典LAMBDA算法会出现法矩阵病态导致整周模糊度无法求解。针对这一问题研究了基于TIKHONOV正则化原理的改进LAMBDA算法。通过对双差观测方程系数矩阵进行奇异值分解选取正则化矩阵,改善了法矩阵的病态性,获得了更高精度的浮点解。利用均方误差矩阵替代协方差阵进行LAMBDA求解,提高了模糊度求解的速度和成功率。对连续100组5个历元实测数据计算表明:与原算法相比,改进LAMBDA算法求得的浮点模糊度偏差从36.48周减小到4.08周,搜索效率和成功率分别改进97.74%和100%。
简介:为了提高潜器导航定位精度,针对等值线算法在惯导系统初始误差较大时易发散的问题,提出基于概率神经网络调优的等值线改进方法。首先,在搜索区域内,利用概率神经网络算法对惯导系统航迹进行调优,并经过卡尔曼滤波器与惯导系统航迹进行信息融合形成待匹配航迹;在此基础上利用实时等值线算法得到最佳匹配位置。分别在不同初始条件下进行仿真分析,得出概率神经网络算法在大的初始误差下不易发散但定位精度不高的结论,然后在潜器行驶6h后,初始误差为5.438?的条件下进行仿真验证,结果表明,改进方法定位精度均值优于0.537?,从而证明改进方法是有效的,即使在大的初始误差下仍然能够达到较高的定位精度。