简介:投资者进行投资实践时无不面临着背景风险。绝大多数以均值方差为框架的投资组合并没有考虑背景风险,其效用在实际应用中容易受到背景风险的影响。本文在含有交易费用的双目标函数模型中引入背景风险,从是否含有背景风险和背景风险偏好度大小两方面对投资组合问题展开研究,并使用智能算法得到模型的最优解,对模型进行实证分析。实证结果表明:1)当背景风险收益为0时,含有背景风险的投资组合比不含有背景风险的投资组合更能反映真实的投资环境。2)当背景风险收益不为0时,含有背景风险的投资组合比不含有背景风险的投资组合得到更高的收益。因此,考虑背景风险后投资组合的构建优于不考虑背景风险投资组合的构建。
简介:本文研究的是多目标随机结盟对策的问题,是将单目标的随机结盟对策的ZS-值拓展到多目标的随机结盟对策上,同时考虑了局中人对不同目标的偏好程度,从而,给出了多目标随机结盟对策的ZS-值的定义,并讨论了该值的性质及定理。
简介:在对偶单纯形方法的基础上,提出了线性规划的目标函数最速递减算法.它避开求初始可行基或初始基,以目标函数全局快速递减作为选基准则,将选基过程与换基迭代合二为一,从而大大减少了迭代次数.数值算例显示了该算法的有效性和优越性.
简介:针对多目标0-1规划问题,首先基于元胞自动机原理和人工狼群智能算法,提出一种元胞狼群优化算法,该算法将元胞机的演化规则与嚎叫信息素更新规则、人工狼群更新规则进行组合,采用元胞及其邻居来增强搜索过程的多样性和分布性,使人工头狼在元胞空间搜索的过程中,增强了人工狼群算法的全局搜索能力,并获得更多的全局非劣解;其次结合多目标0-1规划模型对元胞狼群算法进行了详细的数学描述,定义了人工狼群搜索空间、移动算子、元胞演化规则和非劣解集更新规则,并给出了元胞狼群算法的具体实现步骤;最后通过MATLAB软件对3个典型的多目标0—1规划问题算例进行解算,并将解算结果与其它人工智能算法的结果进行比较,结果表明:元胞狼群算法在多目标0-1规划问题求解方面可获得更多的非劣解集和更优的非劣解,并具有较快的收敛速度和较好的全局寻优能力。
简介:供应链中存在着广泛的信息共享,既包括上下游企业间的纵向性共享,也包括同层企业间的横向信息共享。以一个具有学习效应的供应链为研究对象,为研究信息共享对分散型供应链中零售商决策的影响,提出了一个具有横向信息共享的供应链模型。以Cournot博弈为研究手段,求解了零售商的均衡订货决策和信息共享策略。在此模型中,生产商为多个零售商提供类似的产品,每个零售商具有自己独立的终端市场。零售商面对单周期需求,该需求可以在本周期内满足或者在第二阶段延迟交货。由于学习效应的存在,第二阶段生产商的批发价格是第一阶段总订货量的减函数。零售商在观察到自身的需求之前,达成信息共享的协议。研究结果表明,当第一阶段的均衡订货数量低于需求时,零售商间无共享私有信息的动机,该结果和寡头模型信息共享的相关结果相反。除此之外,在一个总体需求稳定的市场中,信息共享的影响随着零售商数量的增加而递减。此结果对企业在不同市场情况下选择信息共享策略具有重要价值。