简介:在这份报纸,在范围的稳定的homotopy组的homotopy元素的一个新家庭由n2m5and3s代表了
简介:Weproveseveralinequaliesforsymmetricpostivesemidefinite,generalMmatricesandinverseM-matriceswhicharegeneralizationoftheclassicalOppenheim'sInequalityforsymmetricpositivesemidefinitematrices.
简介:TheauthorfirstreviewstheclassicalKorninequalityanditsproof.FollowingrecentworksofS.Kesavan,P.Ciarlet,Jr.,andtheauthor,itisshownhowtheKorninequalitycanberecoveredbyanentirelydifferentproof.ThisnewproofhingesonappropriateweakversionsoftheclassicalPoincar'eandSaint-Venantlemma.Infine,bothproofsessentiallydependonacruciallemmaofJ.L.Lions,recalledatthebeginningofthispaper.
简介:ItisprovedthattheChebyshevpolynomial_n(x)=T_n(xcosπ/2n),hasthegreatestuniformnormon[-1,1]ofitsthirdderivativeamongtherealpolynomialsofdegreeatmostn,whichareboundedby1in[-1,1]andvanishin-1and1.
简介:In1972,Fullerprovedthatacompleteadditivesubeategory_RCofR-Modisequivalenttoamodulecategory⊿-Modifandonlyif_RC=Gen(_RU)forsomequasiprogenerator_RUand⊿≌End_RUcanonically.Inthisnotetheauthorgivesacharacterizationof_RCwhichmakes_RUaprojectiveR-moduleinthecasewhenRisarightperfectringwithidentity,andshowsthatR-ModistheuniquecompleteadditivesubcategoryofR-ModwhichisequivalenttoR-ModforaleftArtinianringR.
简介:ThisarticledescribesalocalerrorestimatorforGlimm'sschemeforhyperbolicsystemsofconservationlawsandusesittoreplacetheusualrandomchoiceinGlimm'sschemebyanoptimalchoice.Asaby-productofthelocalerrorestimator,theprocedureprovidesaglobalerrorestimatorthatisshownnumericallytobeaveryaccurateestimateoftheerrorinL1(R)foralltimes.Althoughthereispartialmathematicalevidencefortheerrorestimatorproposed,atthisstagetheerrorestimatormustbeconsideredad-hoc.Nonetheless,theerrorestimatorissimpletocompute,relativelyinexpensive,withoutadjustableparametersandatleastasaccurateasotherexistingerrorestimators.Numericalexperimentsin1-DforBurgers'equationandforEuler'ssystemareperformedtomeasuretheasymptoticaccuracyoftheresultingschemeandoftheerrorestimator.
简介:<正>InthepresentnotethealgebraicindependenceofvaluesofseveralMahlerserieswithcertainparticularanddifferentparametersatalgebraicpointsisestablishedbymeansofatypicalapproximationmethodhandlingtheLiouvilletypeseries.
简介:InthispaperwediscusstheconvergenceofamodifiedNewton’smethodpresentedbyA.Ostrowski[1]andJ.F.Traub[2],whichhasquadraticconvergenceorderbutreducesoneevaluationofthederivativeateverytwostepscomparedwithNewton’smethod.Aconvergencetheoremisestablishedbyusingaweakconditiona≤3-2(21/2)andasharperrorestimateisgivenabouttheiterativesequence.