简介:利用迭合度理论的连续定理,讨论了一类中立型系统的正周期解的存在性.得到了正周期解存在的一些充分条件.
简介:TheKurzweil-HenstockintegralformalismisappliedtoestablishtheexistenceofsolutionstothelinearintegralequationsofVolterra-typewherethefunctionsareBanach-spacevalued.SpecialtheoremsonexistenceofsolutionsconcerningtheLebesgu3integralsettingareobtained.Thesesharpenearlierresults.
简介:TheprimarypurposeofthispaperistopresenttheVolterraintegralequationofthetwo-variableHermitematrixpolynomials.Moreover,anewrepresentationofthesematrixpolynomialsareestablishedhere.
简介:WeconsiderthemultidimensionalabstractlinearintegralequationofVolterratypex(t)+(*)∫Rtα(s)x(s)ds=f(t),t∈R,(1)asthelimitofdiscreteStieltjes-typesystemsandweproveresultsontheexistenceofcontinuoussolutions.Thefunctionsx,αandfareBauachspace-valueddefinedonacompactintervalRofR^nRtisasubintervalofRdependingont∈Rand(*)fdenoteseithertheBochner-LebesgueintegralortheHenstockintegral.Theresultspresentedheregeneralizethosein[1]andareinthespiritof[3].Asaconsequenceofourapproach,itispossibletostudythepropertiesof(1)bytransferringthepropertiesofthediscretesystems,TheHenstockintegralsettingenablesustoconsiderhighlyoscillatingfunctions.
简介:UsingafixedpointtheoremofKrasnosel'skiitype,thisarticleprovestheexistenceofasymptoticallystablesolutionsforaVolterra-Hammersteinintegralequationintwovariables.
简介:ThediscretedynamicsforcompetitionpopulationsofLotka-VolterratypemodeledasN1(t+1)=N1(t)exp[r1(1-N1-b12N2)],N2(t+1)=N2(t)exp[r2(1-N2-b21N1)]isconsideredinthepaper.Inthecaseofnon-persistencetheattractivebehaviorofmodelhasbeendiscussed.Especially,therearetwoattractivesetswhenbij>1,andtheattractivebehaviorsaremorecomplicatedthanthatofthecorrespondingcontinuousmodel.Theattractedregionsaregiven.Weprovethatthemodelisalsopersistentinthedegeneratecaseofbij=1.Inthepersistencecaseofbij<1,theexistenceanduniquenessfortwo-periodpointsofthemodelarestudiedatr1=r2.Theconditionforthemulti-pairoftwo-periodpointsisindicatedandtheirinfluencesonpopulationdynamicalbehaviorsareshown.
简介:ThepurposeofthispaperistostudythesuperconvergencepropertiesofRitz-Volterraprojection.ThroughconstructionanewtypeofGreenfunctionandmakinguseofitspropertiesandtheprincipleofduality,thepaperprovesthattheRitz-Volterraprojectiondefinedonr-1orderfiniteelementspacesofLagrangetypeinoneandtwospacevariablecasespossessesO(h2r~2)orderandO(h4+1|Inh|)ordernodalsuperconvergence,respectively,andthesametypeofsuperconver-genceresultsaredemonstratedforthesemidiscretefinitedementapproximatesolutionsofSoboleve-quations.
简介:§1.IntroductionItisknownthatthefollowingCauchyproblemforaparabolicpartialdifferentialequation(wherethevaluesattherightboundary,u.(1,t)=v(t)areunknownandsoughtfor)isill-posed:thesolution(v)doesnotdependcontinuouslyonthedata(g).Inordertotreattheill-posednessanddevelopthenumericalmethod,onereformulatestheproblemasaVolterraintegralequationofthefirstkindwishaconvolutiontypekernel(seeSneddon[1],CarslawandJaeger[2])
简介:Inthispaper,aLotka-Volterracooperationsystemwithsinglefeedbackcontrolisproposedandstudied.Weinvestigatethelocalstabilityandtheglobalstabilityofthesystem.Ourstudyshowsthatwithsuitablerestrictiononthecoefficientsofthefeedbackcontrolvariable,thesystemcanstillremaingloballystableorbecomeextinct,whichshowsthatthefeedbackcontrolvariableplaysaveryimportantroleinthedynamicsbehaviorsofthesystem.
简介:ThepurposeofthispaperistostudythestabilityandapproximationpropertiesofRitz-Volterraprojection.ThroughconstructinganewtypeofGreenfunctionsandmakinguseofvariouspropertiesandestimatesrelatedwiththefunctions,weprovethattheRitz-Volterraprojectiondefinedonthefinite-dimensionalsubspaceS_hofH_o~1possessestheW_p~1-stabilityandtheoptimalapproximationpropertiesinW_p~1andL_pfor2≤p≤∞.Ourresults,inthispaper,canbeappliedtothefiniteelementapproximationsformanyevolutionequationssuchasparabolicandhyperbolicintegrodifferentialequations,Sobolevequationsandvisco-elasticity,etc.
简介:Inthispaper,weproposeaLotka-Volterraprey-predatorsystemwithdiscretedelaysandfeedbackcontrol.Firstly,weshowthatsolutionofthesystemisbounded.Secondly,weobtainsufficientconditionfortheglobalstabilityoftheuniquepositiveequilibriumtothesystem.
简介:Inthispaper,wepresentastabilityanalysisofaLotka-VolterracommensalsymbiosismodelsubjecttoAlleeeffectontheunaffectedpopulationwhichoccursatlowpopulationdensity.ByanalyzingtheJacobianmatrixaboutthepositiveequilibrium,weshowthatthepositiveequilibriumislocallyasymptoticallystable.Byapplyingthedifferentialinequalitytheory,weshowthatthesystemispermanent,consequently,theboundaryequilibriaofthesystemisunstable.Finally,byusingtheDulaccriterion,weshowthatthepositiveequilibriumisgloballystable.AlthoughAlleeeffecthasnoinfluenceonthefinaldensitiesofthepredatorandpreyspecies,numericsimulationsshowthatthesystemsubjecttoanAlleeeffecttakesmuchlongertimetoreachitsstablesteady-statesolution,inthissensethatAlleeeffecthasunstableeffectonthesystem,however,suchaneffectiscontrollable.Suchanfindingisgreatlydifferenttothatofthepredator-preymodel.