简介:主要利用Leray-Schauder不动点理论研究Lienard方程周期边值问题{(x)+f(x)(x)+g(t,x)=e(t)x(0)=x(T),(x)(0)=(x)(T)的正解及多个正解的存在性.
简介:研究Kac方程的初值问题.证明了该类方程存在唯一的全局分布解.并且使用一种新的线性化方法证明了该类方程的解具有相应的多项式衰减性.
简介:本文主要讨论了Schnakenberg方程组的初值问题,首先用多重尺度方法求得Schnakenberg方程组的一阶近似解,然后利用非线性的Gronwall不等式对所求结果进行误差估计。
简介:本文研究等离子体中的高功率超短激光通道问题中出现的一类非线性Schrodinger方程,利用变分原理,把一类非线性Schrodinger方程转换为变分问题,再利用喷泉定理及对偶喷泉定理证明一类非线性Schrodinger方程存在驻波解.
简介:讨论了Banach空间X中带有非局部条件的半线性发展方程.在g失去紧性的条件下,利用L^p(I;X)空间中的不动点定理,对边值问题适度解的存在性做了研究,完善和推广了已有结论.最后给出一个在偏微分方程中的例子.
简介:证明了几个重要不等式,并研究了几类不同边界条件下随机半闭1-集压缩算子方程随机解的存在情况,得到了若干新的结果.