简介:一个r-klee-图递归定义为一个r+1阶完全图或者通过用一个r阶完全图替换已知的r-klee-图G′中的一个顶点所得到的图.本文主要研究了r-klee-图的Hamilton-连通性和着色问题.我们证明了:每一个r-klee-图是Hamilton-连通的和它的色数是r;如果r是奇数,则它的边色数是r;如果r是偶数,则它的边色数是r+1.
简介:TWONEWSUFFICIENTCONDITIONSFORHAMILTON-CONNECTEDGRAPHSWUZHENGSHENG(吴正声)(DepartmentofMathematics,NanjingNomalUniversity,Nanjing...
简介:Inthispaper,weuseDaubechiesscalingfunctionsastestfunctionsfortheGalerkinmethod,anddiscussWavelet-GalerkinsolutionsfortheHamilton-Jacobiequations.ItcanbeprovedthattheschemesareTVDschemes.NumericaltestsindicatethattheschemesaresuitablefortheHamilton-Jacobiequations.Furthermore,theyhavehigh-orderaccuracyinsmoothregionsandgoodresolutionofsingularities.
简介:Thesolvabilityofaclassofforward-backwardstochasticdifferentialequations(SDEsforshort)overanarbitrarilyprescribedtimedurationisstudied.Theauthorsdesignastochasticrelaxedcontrolproblem,withbothdriftanddifftusionallbeingcontrolled,sothatthesolvabilityproblemisconvertedtoaproblemoffindingthenodalsetoftheviscositysolutiontoacertainHamilton-Jacobi-Bellmanequation.ThismethodovercomesthefataldifficultyencounteredinthetraditionalcontractionmappingapproachtotheexistencetheoremofsuchSDEs.
简介:设Gl和岛是两个连通图,则G1和G2的Kronecker积GIXG2定义如下:V(G1×G2)=V(G1)×V(G2),E(G1×G2)=((ul,vl)(u2,u2):ulu2∈E(G1),ulu2∈.E(G2)).我们证明了G×Kn(n〉4)超连通图当且仅当k(G)n〉6(G)(n-1),其中G是任意的连通图,Kn是n阶完全图.进一步我们证明了对任意阶至少为3的连通图G,如果圪(G)=δ(G),则G×Kn(n〉3)超连通图.这个结果加强了郭利涛等人的结果.
简介:应用变分方法与Morse理论,本文讨论下面含有时滞的广义Hamilton系统的周期解,J^*du/dt=g(t,u(t-r1),…,u(t-rs))其中J^*是非奇异2n×2n反对称矩阵,在一定条件下,本文得到上述议程至少存在两个非平凡2π-周期解;而对于一般的微分系统,本文给出其具有变分结构的判定性准则。
简介:设D=(y(D),A(D))是一个强连通有向图.弧集SA(D)称为D的k-限制性弧割,如果D-S中至少有两个强连通分支的阶数大于等于后.最小k-限制性弧割的基数称为k-限制性弧连通度,记作Ak(D).k-限制性点连通度Kk(D)可以类似地定义.有k-限制性弧割(k-限制性点割)的有向图称为λk-连通(kk-连通)有向图.本文研究有向图D的限制性弧连通度和其线图L(D)的限制性点连通度的关系,证明了对任意λk-连通有向图D,kk(L(D))≤λk(D),当k=2,3时等式成立;若L(D)是Kk(k-1)连通的,则λk(D)≤Kk(k-1)(L(D));特别地,若D是一个定向图且L(D)是Kk(k-1)/2.连通的,贝0Ak(D)≤Kk(k-1),2(L(D)).
简介:用直接计算的方法对一类Hamilton系统的两个Abel积分比值的单调性进行讨论,指出该单词性条件可由两个判定函数直接确定.