简介:用构造法研究了路和圈的Mycielski图的点可区别均匀边染色,得到了路和圈的Mycielski图的点可区别均匀边色数,验证了它们满足点可区别均匀边染色猜想(VDEECC).
简介:ONM-IDEALSANDBESTAPPROXIMATIONHANDEGUANG(韩德广)(DepartmentofMathematics,QufuNormalUniversity,Qufu273165,China)Abstract:Inthispa...
简介:ALeverrier-likealgorithmispresentedwhichallowsthecomputationofthetransferfunctionofalinearregularsystemfromitsm-Dstate-spacedescription,withoutinvertingamultivariablepolynomialmatrix.ThisalgorithmisanextensionoftheclassicLeverrier'salgorithmfor1-Dsystemanditreducesthecomputationalcost.ra-DCayley-Hamiltontheoremisalsoshownbythealgorithm.
简介:A.simplicialmesh(triangulation)isconstructedthatgeneralizesthetwo-dimensional4-directionmeshtoR~m.Thismesh,withsymmetric,shift-invariantvaluesatthevertices,isshowntoadmitaboundedC~1interpolantifandonlyifthealternatingsumofthevaluesattheverticesofany1-cubeiszero.Thisim-pliesthaiinterpolationattheverticesofanm-dimensional,simplicialmeshbyaC~1piecewisepolynomialofdegreem+1withonepiecepersimplexisunstable.
简介:ComputingtheeigenvalueofsmallestmodulusanditscorrespondingeigneveclorofanirreduciblenonsingularM-matrixAisconsidered,ItisshownthatiftheentriesofAareknownwithhighrelativeaccuracy,itseigenvalueofsmallestmodulusandeachcomponentofthecorrespondingeigenvectorwillbedeterminedtomuchhigheraccuracythanthestandardperturbationtheorysuggests.Analgorithmispresentedtocomputethemwithasmallcomponentwisebackwarderror,whichisconsistentwiththeperturbationresults.
简介:Kizmaz[13]学习了差别顺序空格?∞(Δ),c(Δ),和c0(Δ)。几篇文章处理了哪个被围住的m-th顺序差别的序列的集合,对零会聚,或会聚。Altay和Ba?ar[5]并且Altay,Ba?ar,和Mursaleen[7]介绍了Euler顺序空格e(r)0,e(r)c,和e(r)∞分别地。这篇文章的主要目的是介绍空格e(r)0(Δ(m)),e(r)c(Δ(m)),并且e(r)∞(Δ(m))由其m(th)命令差别在Euler空格的所有序列组成e(r)0,e(r)c,和e(r)∞分别地。而且,作者给一些拓扑的性质和包括关系,并且决定空格e(r)的α-,β-,和γ-duals0(Δ(m)),e(r)c(Δ(m)),并且e(r)∞(Δ(m)),并且空格e(r)的Schauder基础0(Δ(m)),e(r)c(Δ(m))。文章的最后节在顺序空间e(r)c(Δ(m)上被奉献给一些矩阵地图砰的描述)。给词调音:顺序m的差别顺序空格;Schauder基础;α-,β-,和γ-duals;矩阵地图砰
简介:Anecessaryandsufficientconditionofregularityof(0,1,…,m-2,m)interpolationonthezerosof(1-x)Pn-1α,β(x)(α>-1,β≥-1)inamanageableformisestablished,wherePn-1α,β(x)standsforthe(n-1)thJacobipolynomial.Meanwhile,theexplicitrepresentationofthefundamentalpolynomialswhentheyexist,isgiven.