简介:引入数值函数关于睇值函数的R-S积分,研究了此类积分的性质及向量值R—S积分存在的几个充分条件,并给出了积分的收敛定理.
简介:运用二重B-值随机变量列{Xmn}在某阶矩一致有界条件下的性质和引理2.1的不等式,结合二重Dirichlet级数的成果,证明了在一定条件下,二重B-值随机Dirichlet级数+∞∑m=1+∞∑n=1Xmne-λms-μnta.s.几乎必然与二重Dirichlet级数+∞∑m=1+∞∑n=1E(||Xmn||)e-λms-μnt有相同的成对的相关收敛横坐标.
简介:系统地研究了全平面收敛的B-值随机Difichlet级数的增长性,得到了在一定条件下,B-值随机Dirichlet级数在收敛平面上的增长(下)级几乎处处等于某Dirichlet级数的增长(下)级还得到了它们与指数和系数的关系式.
简介:给出一种基于商的形式的Lagrange与Hermite插值公式及其证明,同时还给出了两个相关的不等式.
简介:提出了点集Bézier曲线的概念,给出了点集Bézier曲线的性质及细分算法.按照点集算术的定义,当点集是长方形闭域或圆盘时,点集Bézier曲线就是区间Bézier曲线或圆盘Bézier曲线,因此,点集Bézier曲线是对区间Bézier曲线和圆盘Bézier曲线的推广.
简介:一、填空题(每空3分,共33分)1.当x=时,分式|x|-2x-2的值为零.2.在分式nm中,当时,分式无意义,当时,分式的值为零.3.约分14a5b363ab4c=.4.若a-1a=1,则a2+a-2=.5.若a-bb=23,则ab=.6.当x时,代数式2x-3-1x+2+3x2+1有意义.7.如果1x-3+1=ax-3会产生增根,那么a的值应是.8.若分式x-32x+1的值为负,则x的取值范围为.9.(ba+ab)x=ab-ba-2x (a+b≠0),则x=.10.化简1+11-11+1x=.二、选择题(每小题4分,共32分)1.分式|m+n|m+n的值是( ).(A)1 (B)-1 (C