简介:讨论弱耗散梁方程的能量衰退.通过构造辅助泛函的方法克服了一般的证明能量估计的方法在证明过程中所碰到困难,从而证明了如果记忆核是指数衰退的,那么能量也是指数衰退的.
简介:对于两端固定的一维非线性梁方程的初边值问题,用多重尺度法求得近似解的首项,并用能量方法结合非线性Gronwall不等式得出了近似解首项的误差的一致性估计.
简介:研究具有耗散结点的连接梁的最优指数衰减率问题,该系统由于能量的衰减而导致弯矩在结点处间断,我们的方法是证明系统的一组广义征元生成状态空间的Riesz基,从而证明最优指数衰减率可由系统的谱确定。
简介:
简介:本文用Legendre谱方法估计一端固定,一端加弯矩耗散线性反馈的梁振动的闭环系统使能量最快衰减的最优反馈增益,我们给出了数值产生的图形结果,通过比较发现另一种非耗散的线性反馈在最优反馈增益下比相应的耗散线性反馈有更好的衰减率。
简介:本文研究的是由记忆热方程和Euler-Bernoulli梁方程构成的传输系统,其中热方程作为梁方程的控制器.通过频域上的能量乘子法,我们建立了耦合系统的指数稳定性.
简介:讨论变系数Euler-Bernoulli梁振动系统utt(x,t)+η(t)uxxxx(x,t)=0,0<x<1,0≤t≤T{u(0,t)=ux(0,t)=0,0≤t≤T-uxxx(1,t)+mutt(1,t)=-αut(1,t)+βuxxxt(1,t),0≤t≤T(1)uxt(1,t)=-γuxx(1,t),0≤t≤Tu(x,0)=u1(x),ut(x,0)=u2(x),0≤x≤1证明了该系统产生一个发展系统.
简介:考虑动态输出反馈控制下Euler-Bernoulli梁的振动抑制问题,证明了系统算子生成的C0-半群,不指数稳定但渐近稳定.且当初值充分光滑时,利用Riesz基方法估计出系统能量多项式衰减.
简介:讨论了一个在边界上有剪力反馈控制的Euler-Bernoulli梁方程,证明了其广义本征函数生成的根子空间在能量Hilbert空间中是完备的.
简介:概率论与数理统计》是高等院校理工类和经济管理类专业公共的基础课程,其重要性自不待言,如何提高该课程的教学质量和学生学习的自觉性是迫切需要解决的问题.本文通过结合教学实践和理论思考,阐述了教学改革的几.最看法,以期提高教学效果和效率,有利于学生综合能力的培养.
简介:讨论具有非线性耗散边界反馈的非均质Euler-Bernoulli梁的镇定问题.首先利用非线性半群理论和能量摄动方法,证明了文中所给出的非线性耗散边界反馈控制可以镇定闭环系统的能量,并导出了闭环系统的能量的衰减速度.
简介:设E[0,1]是一个零测度的闭子集。对于左端刚性固定右端简单支撑的非线性梁方程u^((4))(t)=f(t,u(t)),t∈[0,1]/E,u(0)=u(1)=u′(0)=u″(1)=0,证明了一个新的正解存在定理,其中允许非线性项f(t,u)是非单调的并且在t=0,t=1及u=0处是奇异的.主要工具是全连续算子的逼近定理和锥压缩锥拉伸型的Guo-Krasnoselskii不动点原理。
简介:对于非线性四阶两点边值问题建立了一个孪生正解的存在定理.该边值问题通常描述了具有固定两端点的弹性梁的形变.
简介:通过选择适当的Banach空间并利用Leray-Schauder非线性抉择对于含各阶导数的非线性弹性梁方程u(4)(t)=f(t,u(t),u′(t),u″(t),u(t)),0t1,u(0)=u′(1)=u″(0)=u(''')(1)=0.建立了一个解的存在定理.在材料力学中,该方程描述了一端简单支撑,另一端被滑动夹子夹住的弹性梁的形变.这个存在定理说明只要非线性项满足某种线性增长条件该方程至少有一个解.
简介:利用一般凹算子的不动点定理研究了一类含隅角和弯矩的弹性梁方程,得到了单调正解的存在唯一性结果.最后给出一个典型例子说明所给结果的应用.
简介:一、实物期权的概念及应用背景所谓实物期权,是指在不确定条件下以期权的概念来定义的实物资产投资的现实选择性,反映了企业进行长期资本投资的现实选择权,同时也反映了企业进行长期投资决策时拥有的,能根据在决策时不确定的因素改变投资行为的一种权利。
简介:研究了具有扭转耦合效应的复合薄壁梁黎斯基的性质以及指数稳定性.首先证明该系统决定算子的预解式是紧的,且可生成群.其次,通过对该系统算子谱的渐近分析,证明了除至多有限个本征值外,其算子的谱是单重可分离的.特殊地,我们获得了自由系统的频率渐近表达式,因而利用克尔德什定理,证明了在希尔伯特状态空间中算子广义本征函数列的完备性.最后,结合黎斯基的性质及算子谱的分布证明了该系统的指数稳定性.
简介:1赛题分析与解题思路2017年美国大学生数学建模竞赛D题研究机场安检系统旅客吞吐量的优化问题。赛题要求针对美国的机场安检系统建立数学模型,解决如下问题:1)研究旅客通过安检系统的流量,并识别现有系统中的瓶颈,找出存在的问题。
简介:提出了一类求解带有箱约束的非凸二次规划的新型分支定界算法.首先。把原问题目标函数进行D.C.分解(分解为两个凸函数之差),利用次梯度方法,求出其线性下界逼近函数的一个最优值,也即原问题的一个下界.然后,利用全局椭球算法获得原问题的一个上界,并根据分支定界方法把原问题的求解转化为一系列子问题的求解.最后,理论上证明了算法的收敛性,数值算例表明算法是有效可行的.
弱耗散梁方程的渐近性
一维非线性梁方程的摄动解
关于连接梁的最优衰减率问题
珠算中算盘下珠离梁的指法比较
一口清模式乘法的再简法
梁振动边界反馈的最优反馈增益的数值解
记忆热-梁方程传输系统的指数稳定性
变系数Euler-Bernoulli梁振动发展系统的存在性
动态控制下Euler-Bernoulli梁的多项式镇定
边界剪力反馈下梁振动系统根子空间的完备性
简析《概率论与数理统计》课程教学改革
非均质Euler-Bernoulli梁的非线性耗散边界反馈镇定
左端刚性固定右端简单支撑的奇异梁方程正解的存在性
非线性弹性梁方程的一个孪生正解的存在定理
含各阶导数的非线性弹性梁方程的一个存在定理
一类含隅角和弯矩的弹性梁方程的单调正解
浅论实物期权在高速公路投资决策中的应用
具有扭转耦合效应的复合薄壁梁黎斯基的性质和指数稳定性
机场安检系统旅客吞吐量的优化模型——ICM2017 D题简析
基于D.C.分解的一类箱型约束的非凸二次规划的新型分支定界算法