学科分类
/ 1
16 个结果
  • 简介:介绍了密度矩阵的概念、Hilbert-Schmidt内积、由此内积诱导的范数,然后以矩阵及算子理论为基础,借助内积这一数学工具给出了二阶、四阶、八阶密度阵的表示,并对二阶、四阶、八阶密度阵表示进行了分析,得到了相关结论,最后将其结论推广到2~n阶密度阵.

  • 标签: 密度矩阵 内积 范数 正规正交基
  • 简介:分析了Г分布密度函数的性质,指出了该密度函数与相应参数之间的关系.主要研究第二个参数对密度的影响,证明了β增大时Г(α,β)分布密度极大值也增大,还指出了β变化时Г(α,β)分布密度与另一特定密度曲线交点的变化规律.

  • 标签: Г分布 密度函数 Г函数
  • 简介:针对不确定多属性决策中的属性信息分布不均匀,且评价信息多数为二维信息的情况,本文提出了二维区间密度加权算子(TDIDW算子)的属性信息集结方法.依据密度算子的集结过程特点,文章首先定义了二维区间密度加权算子及其合成算子,然后介绍了基于灰色区间聚类法的评价信息分组方法以及基于非线性模型的密度加权向量确定方法,最后进行了算例验证.验证结果表明,该方法可以有效地解决由于属性信息分布不均匀而垦砖;平价结橐不准确曲泪靳

  • 标签: 多属性决策 二维区间密度加权算子 灰色区间聚类法 非线性模型
  • 简介:密度依赖者粘性的one-dimensionalcompressible流动的方程的答案的全球存在被证明。明确地,起始的数据上的假设是模常数在可能不同的x=+∞和x=-∞,被说密度和速度在L~2,并且密度上面并且下面被围住离开零。Theresults也证明甚至在这些条件下面,既不真空状态也不集中状态能在有限时间被形成。

  • 标签: 密度 粘性 可压缩NAVIER-STOKES方程 数学分析
  • 简介:3月27日,高密市行政事业单位会计培训班在市委党校正式开班。本次培训作为“会计信息质量年”活动的一项重要内容,邀请了国内知名专家教授、专业档案管理人员进行授课,用2天时间,对全市行政事业单位近240名会计从业人员进行系统的业务培训。

  • 标签: 会计信息质量 行政事业单位 业务培训 培训班 高密市 潍坊
  • 简介:研究具广义边界条件、非均匀介质、各向异性和连续能量的模型迁移算子A的谱.证明了K=A-B的相对紧性,在L1空间研究算子A的谱,以及占优本征值和严格占优本征值.

  • 标签: 迁移算子 边界条件 紧性 连续能量 本征值 广义
  • 简介:在L,(1≤P〈∞)空间研究了几何中一类带反射边界条件具各向异性、连续能量、均匀介质迁移算子的谱,证明了该迁移算子生成C0半群的Dyson—Phillips展开式的二阶余项在LP(1〈P〈∞)(L1)空间中是紧(弱紧)的,从而得到了该迁移算子的占优本征值的存在性等结果.

  • 标签: 迁移算子 C0半群 二阶余项 占优本征值
  • 简介:研究节能刮沉降箱式除尘可修复系统,运用泛函分析的方法,特别是Banach空间上的线性算子半群理论,证明了严格占优本征值的存在性,并通过分析本质谱界经过扰动后的变化,进一步表明在一定的条件下,系统的动态解以指数形式收敛于系统的稳态解.并研究了该系统算子预解式的特性.对任意给定的δ〉0,γ=a+bi,-μ+δ〈a1≤a≤a2,得到||R(γ;A+B)||=0.进而得到在Rγ≥a1的右半平面内相应于系统算子A+B的谱点由有限个本征值组成.

  • 标签: 严格占优本征值 本质谱界 扰动 指数稳定性 预解式
  • 简介:在L^p(1〈P〈∞)空间上研究几何中一类具反射边界条件下各向异性、连续能量、均匀介质的奇异迁移方程.证明其奇异迁移算子产生C0半群和该半群的Dyson-Phillips展开式的二阶余项是紧的,且得到了该算子的谱在区域Г中由具有限代数重数的离散本征值组成等结果.

  • 标签: 奇异迁移方程 反射边界条件 C0半群 二阶余项
  • 简介:一、引言创业市场是专门为协助新兴创新公司或高成长的高科技公司筹资而开展的资本市场,主要针对具有高成长性、高创新性、高收益和高风险性等特征的中小科技型企业。创业市场的出现缓解了我国中小企业融资难的问题,

  • 标签: 创业板 股权结构 上市公司 绩效 资本市场 创新公司