简介:主要研究ψ-混合随机变量序列部分和的强大数定律,并且得到了一些新结果.在混合系数满足一定条件时,本文的结果推广了独立序列的相应结果.
简介:本文提出一个新的预条件子,用共轭梯度法求解对称正定的Teoplitz型线性方程组.该预处理子构造简单,易于实施快速傅里叶变换.理论和数值实验显示,我们的预处理子与T.Chan预处理子收敛性相近.
简介:在不要求C0-半群为紧半群的前提下.利用函数e^-λt(其中λ〉0是常数)和Monch不动点定理,在更广泛的条件下,得到了Banach空间中一类半线性混合型发展方程初值问题的整体mild解和正mild解,本质上改进和推广了已有相关结果.
简介:讨论了一类混合单调算子的耦合不动点定理,并获得了最大最小耦合不动点.作为应用,讨论了Banach空间中含有不连续项的混合单调Volterra型积分方程耦合拟解的存在性问题.
简介:研究了一类用于时间序列建模的混合自回归滑动平均模型,该模型是由m个ARMA分量经过混合得到的,给出了混合自回归滑动平均模型参数估计的期望极大化(EM)算法,从而得到了混合系数和分量模型的参数,通过仿真说明了其有效性。