简介:利用对称内积的Schmidt正交化方法证明了各阶主子式不为零对称阵的LDLT分解.引入两个向量组关于弱内积广义正交的概念,并构造了将两组含相同个数向量的线性无关组化为广义正交组的广义Schmidt正交化方法.最后应用这一方法证明了各阶主子式不为零矩阵的LDU分解及一些相关的结果.
简介:第1课 提公因式法(一)一、启发提问我们学习了整式乘法:(1)m(a+b+c)=ma+mb+mc(2)(a+b)(a-b)=a2-b2把(1)(2)式反过来写,就是(3)ma+mb+mc=m(a+b+c)(4)a2-b2=(a+b)(a-b)在等式(1)(2)中,由两因式的积变成多项式叫做整式乘法,在等式(3)(4)中,由多项式变成几个整式的积叫什么?怎样进行?二、读书自学(P2~P5)1把一个化成几个的积的形式,叫做把这个多项式.2一个多项式中各项都有的因式,叫做这个多项式的,多项式ma+mb+mc中的公因式是,则ma+mb+mc可写成m与a+b+c的积的形式,这种分解因式的方法叫做.三