简介:AconstructiveproofisgivenfortheinversionformulaforzonalfunctionsonSL(2,R).AconcretelyconstructedsequenceofzonalfunctionsareprovedtosatisfytheinversionformulaobtaAnedbyHarish-Chandraforcompactsupportedinfinitelydifferentiablezonalfunctfons.Makinguseofthepropertyofthissequencesomehowsimilartothatofapproximationkernels,theauthorndeducethattheinversionformulaistrueforcontinuouszonalfunctiotmon8L(2,R)somecondition.Theclassicalresultcanbeviewedasacorollaryoftheresultshere.
简介:.Thesingle2dilationorthogonalwaveletmultipliersinonedimensionalcaseandsingleA-dilation(whereAisanyexpansivematrixwithintegerentriesand|detA|=2)waveletmultipliersinhighdimensionalcasewerecompletelycharacterizedbytheWutamConsortium(1998)andZ.Y.Li,etal.(2010).Butthereexistnomoreresultsonorthogonalmultivariatewaveletmatrixmultiplierscorrespondingintegerexpansivedilationmatrixwiththeabsolutevalueofdeterminantnot2inL2(R2).Inthispaper,wechoose2I2=(2002)asthedilationmatrixandconsiderthe2I2-dilationorthogonalmultivariatewaveletY={y1,y2,y3},(whichiscalledadyadicbivariatewavelet)multipliers.Wecallthe3×3matrix-valuedfunctionA(s)=[fi,j(s)]3×3,wherefi,jaremeasurablefunctions,adyadicbivariatematrixFourierwaveletmultiplieriftheinverseFouriertransformofA(s)(cy1(s),cy2(s),cy3(s))?=(bg1(s),bg2(s),bg3(s))?isadyadicbivariatewaveletwhenever(y1,y2,y3)isanydyadicbivariatewavelet.Wegivesomeconditionsfordyadicmatrixbivariatewaveletmultipliers.TheresultsextendedthatofZ.Y.LiandX.L.Shi(2011).Asanapplication,weconstructsomeusefuldyadicbivariatewaveletsbyusingdyadicFouriermatrixwaveletmultipliersandusethemtoimagedenoising.
简介:Inthispaper,theauthorsobtaintheBaecklundtransformationontime-likesurfaceswithconstantmeancurvatureinR^2,1.Usingthistransformation,familiesofsurfaceswithconstantmeancurvaturefromknownonescanbeconstructed.
简介:
简介:图G的广义Randic指标定义为Rα=Rα(G)=∑uv∈E(G)(d(u)d(v))^α,其中d(u)是G的顶点u的度,α是任意实数.本文确定了单圈共轭图的广义Randic指标R-1的严格下界,并刻划了达到最小R-1的极图,这类极图还是化学图.
简介:UsingthemethodofGirsanovtransformation,weestablishtheTalagrand'sT2-inequalityfordiffusiononthepathspaceC([0,N],R^d)withrespecttoauniformmetric,withtheconstantindependentofN.ThisimprovestheknownresultsfortheL2-metric.