学科分类
/ 1
4 个结果
  • 简介:研究了若干科类的强边染色。利用在图中添加辅助点和边的方法,2构造性的证明于对于完全图Kn和路Lm的笛卡尔积图Kn×Lm,有xas'(KR×KTR)=△(Kn×Lm)+1,其中△(K×Lm)和X'as(Kn×Lm)分别表示图Kr×Lm的最大度和强边色数。同理验证了n阶完全图Ks的广义图K(n,m)满足强边染色猜想。

  • 标签: 完全图 广义图 笛卡尔积图 邻强边染色 邻强边色数
  • 简介:设G(V,E)是简单连通图,T(G)为图G的所有顶点和边构成的集合,并设C是k-色集(k是正整数),若T(G)到C的映射f满足:对任意uv∈E(G),有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),并且C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.那么称f为图G的点可区别E-全染色(简记为k-AVDETC),并称χ_(at)~e(G)=min{k|图G有k-点可区别E-全染色}为G的点可区别E-全色数.图G的中间图M(G)就是在G的每一个边上插入一个新的顶点,再把G上相邻边上的新的顶点相联得到的.探讨了路、圈、扇、星及轮的中间图的点可区别E-全染色,并给出了这些中间图的点可区别E-全色数.

  • 标签: 中间图 邻点可区别E-全染色 邻点可区别E-全色数
  • 简介:图G的点可区别边染色是G的正常边染色,使得每一对相邻顶点有不同的颜色集合.G的点可区别边色数χ′_a(G)是使得G有一个k-点可区别边染色的最小正整数七.本文证明了:若G是围长至少为4且最大度至少为6的平面图,则χ′_a(G)≤△+2.

  • 标签: 邻点可区别边染色 平面图 最大度 围长