简介:考察Hardy空间H^2(T)上的解析Toeplitz算子的局部谱,得到的主要结果是:当φ∈H^∞(T)时,A↓∈H^2(T),x≠0,σTφ(x)=σ(Tφ).
简介:设T∈H(H),T=U|T|是算子T的极分解,则定义T^λ=|T|^λU|T|^1-λ和T^λ(*)=|T*|^λU|T*|^1-λ,(其中0〈λ〈1)分别为算子的广义Aluthge变换和广义*-Aluthge变换.本文中主要研究了三者之间的几种谱的关系.同时,还证明了算子T满足修正的Weyl定理当且仅当弘满足修正的Weyl定理当且仅当T^λ(*)满足修正的Weyl定理.最后证明了算子T满足a—Weyl定理当且仅当T^λ满足a—Weyl定理.
简介:设M为S^n+1中紧致极小超曲面,Mp,n-p为Sn+1的Clifford极小超曲面,若Spec(M)=Spec(Mp,n-p)在一定条件下,我们可以得出M与Mp,n-p等距同构。
简介:给出了非线性守恒方程初边值问题的Chebychev-Legendre拟谱粘性法(CLSV).文中,用补偿方法处理边界条件,而对高频部分使用粘性法,以恢复精度.最后证明了在适当条件下,CLSV解收敛于唯一的熵解.
简介:考察一类带幂次非线性项的Schrodinger方程的Dirichlet初边值问题,提出了一个有效的计算格式,其中时间方向上应用了一种守恒的二阶差分隐格式,空间方向上采用Legendre谱元法.对于时间半离散格式,证职了该格式具有能量守恒性质,并给出了L^2误差估计,对于全离散格式,应用不动点原理证明了数值解的存在唯一性,并给出了L^2误差估计.最后,通过数值试验验证了结果的可信性.