简介:本文以1998年全国大学生数模竞赛中的B题(即“灾情巡视路线”)为例,介绍一种最优路线问题的方法--模拟退火法^「1」。该法对旅行推销员、中国邮递员等问题,即使有约束条件,也能求得较好的近似解,具有适用范围广和可拓展的优点。
简介:用变分方法得到一类非线性差分方程多重周期解的存在性.我们的结果推广了Cai,Yu和Guo[Comput.Math.Appl.,52(2006),1630-1647]的结果,并且这里给出的证明显著地简化了.
简介:在连续Gompertz模型基础上,导出了差分形式的Gompertz模型。通过对肿瘤生长数据的模拟,验证了差分形式的Gompertz模型对连续Gompertz模型具有良好的逼近效果;进一步,对其稳定性进行了研究,讨论了模型参数对平衡点稳定性的影响;最后,研究了一类基于差分形式的Gompertz模型的非线性动力系统的长期行为,数值模拟表明差分形式的Gompertz模型的长期行为对模型参数较为敏感。
简介:本文讨论矩阵方程在子矩阵约束下的Hermitian解的共轭梯度迭代算法,先转化成两个低阶方程,然后利用共轭梯度思想分别构造出低阶方程的共轭梯度迭代算法,运用算法求出矩阵方程的Hermitian解及最佳逼近,最后给出了数值实例来验证算法的有效性.