简介:本文主要在原有的G/G/1排队系统的模型中,引入“成批”到达的概念,引入一次到达人数的随机变量ξ,讨论忙期闲期有关的情况.并通过对模型的讨论解决了带有选择的排队过程的分布情况.
简介:研究具有可选服务的M/M/1排队模型的主算子在左半实轴上的点谱.当顾客的到达率λ,必选服务的服务率μ1与可选服务的服务率μ2满足λ/μ1+λμ2〈1时,证明区间(η,-λ)中的所有点都是该主算子的几何重数为1的特征值,其中η=max{-μ1,-μ2,-4/3λ,-2λμ2/μ1+μ2-λ,-μ1μ2(μ1μ2-λμ1-λμ2)+λ3μ1(1-r)/[μ12(μ2-λ)+μ1μ2(μ1-λ)](1-r)+λ2μ1-λ},r表示顾客选择可选服务的概率.
简介:证明对一切θ∈(0,1),所有θ(2√λη-λ-η)都是单重休假的M/M/1排队模型的主算子的几何重数为1的特征值.