简介:对于两个相依线性回归方程组成的系统(1.1),本文提出了β1的待定系数估计β^*1(k,c)=(x′1x1+k1)^-1(x′1y1-cσ12/σ22x′1N2y2),其中岭参数k≥0.c是待定系数.与β^*1(k,c)对应的非限定两步估计记为β^41(T,k,c).当c=1时β^*1(k,1)=β1(k)和β^*1(T,k,1)=β1(T,k)等干[6]引入的一双有偏估计,结果表明总可以选取适当的c值和k值使β^*1(k,c)和β^*1(T,k,c)在均方误差阵准则下分别优于β1和β1(T),并讨论了c值的最佳选择问题.
简介:应用SAS/STAT估计非线性回归模型中的参数.首先,通过变量代换,把可以线性化的非线性回归模型化为线性回归模型,并用普通最小二乘法、主成分分析法和偏最小二乘法求模型中的参数和回归模型.其次,通过改良的高斯一牛顿迭代法来估计Logistic模型和Compertz模型中的参数.
简介:考虑一般的分块半相依线性回归(SUR)模型及其相应的简约模型,给出简约模型下未知回归系数及其可估函数的协方差改进估计仍是分块SUR模型下相应参数的协方差改进估计的一个充要条件.
简介:股票投资是一种重要且先进的投资方式,与其相关的预测已经成为经济领域的研究热点,它不仅是评估投资价值的主要途径而且也对作出正确的股票投资决策具有重要意义。投资风险、收益的预测是股票投资预测的基础、起点。因此,投资风险、收益的准确预测对股票投资分析工作是非常重要的。本文结合相关理论,利用数学和财管的专业知识对股票投资的风险和收益进行了预测,通过线性回归分析方法估计β,进而对资本资产定价模型进行定性分析。根据搜集的变量数据,比较准确的预测了股票投资风险和收益,是对股票投资定量分析的一种尝试。利用模型实证分析,可对投资决策进行科学理性的选择。
简介:研究了一类用于时间序列建模的混合自回归滑动平均模型,该模型是由m个ARMA分量经过混合得到的,给出了混合自回归滑动平均模型参数估计的期望极大化(EM)算法,从而得到了混合系数和分量模型的参数,通过仿真说明了其有效性。
简介:基于平衡损失的思想和最小二乘统一理论,对带线性约束的一般线性模型提出了一种全面度量估计优良性的标准.给出了此标准下模型中回归系数线性函数的约束广义平衡LS估计,并得到了约束广义平衡LS估计唯一性的一个充分条件.