学科分类
/ 4
71 个结果
  • 简介:激发兴趣,拓展思维绵阳市师专附中许镇辉要培养学生的主体意识和主体精神,关键是激发学生的学习兴趣。兴趣可以引起学生的求知欲,兴趣是培养学生的观察力、想象力和逻辑思维活动的起点;兴趣不仅可以培养学生的观察力、想象力和逻辑思维能力,还可以扩大学生的知识面,...

  • 标签: 激发兴趣 趣味数学 拓展思维 培养学生 优胜组 智力竞赛
  • 简介:<正>江泽民同志在第三次全国教育工作会议上指出:"创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力,创新的关键在人才,人才的成长靠教育."数学教学肩负着培养创新型人才的特殊使命.而创新型人才主要体现在有创新的思维,那么,数学教学如何培养学生的创新思维能力?我认为,让学生学会整体思考,是培养学生创新思维能力的有效途经之一.

  • 标签: 数学教学 思维能力 整体思考 思维创新 数学思想方法 求值
  • 简介:结合五个教学案例说明教师在教学中如何依据教学内容进行思维的拓展与延伸,从而改善学生的思维品质与思维习惯.

  • 标签: 大学数学 教学案例 思维品质
  • 简介:1试题呈现在平面直角坐标系xoy中,已知椭圆C:x2/a2+y2/b2=1(a〉b〉0)经过点M(3√2,√2)离心率e=2√2/3.(1)略.(2)过点M作两条直线与椭圆c分别交于相异的两点A,日,若∠AMB的平分线与Y轴平行,探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.(2013届南京一模18题)

  • 标签: 模拟试题 平面直角坐标系 应用 离心率 平分线 AMB
  • 简介:做题就跟生活一样,要讲求步骤性,想要一步登天往往会适得其反.在做代数题时,有时候若按常规方法求解,或繁或不可能,然而若转换思维,在考虑问题时,将注意力和着眼点放在问题整体上,把一些彼此独立,但实质又紧密联系着的量作为整体来处理,则可化繁为简、变难为易.

  • 标签: 代数题 整体法 注意力 求解
  • 简介:整体上思考问题成都航天小学李继明同学们都知道数学家高斯小时候计算:1+2+3+…+98+99+100,的故事。他不是象有的同学那样,一个一个地相加,而是观察、分析所有的加数,发现位于这一列加数“对称”位置上的两数之和都是101,于是将一百个数相加的...

  • 标签: 面积的和 长方形 平行四边形 直觉思维 三角形 水草生长
  • 简介:数学概念是数学定理和数学法则的逻辑基础,一切数学规则的研究、表达与应用都离不开数学概念,因此学好数学概念是学好数学的关键.本文结合具体案例,谈谈在学习过程中,如何利用整体意识指导学生建构数学概念.

  • 标签: 数学概念 整体意识 数学法则 数学定理 学习过程
  • 简介:在抽象空间框架下,研究了具有广泛物理背景的一类半线性发展方程初值问题整体解的存在性.利用正算子半群特征与凸锥理论,把上下解方法引入该问题,给出了整体解存在及唯一的若干充分条件.所得的结果概括、统一及推广了常微分方程、偏微分方程及Banach空间常微分方程中的有关结论.

  • 标签: 正规锥 正C0-半群 上解 下解 非紧性测度
  • 简介:首先明确了《线性代数(非数学专业)》整体教学的目的和实践的过程,其次从学生构建《线性代数》知识、技能和思想方法的角度总结了《线性代数》整体教学实践的一些体会,最后指出《线性代数》整体教学应把握数学观念,更好地将启发式教学与问题解决结合起来.

  • 标签: 《线性代数》 整体教学 认知结构 线性方程组
  • 简介:在三维空间R~3中讨论非线性波动方程外区域初边值问题.当外区域 和初值ф、Ф及非线性项F满足一定条件时,利用线性化问题的衰减估计和Nash-Moser技巧,得到了整体解存在定理.

  • 标签: 非线性初边值 线性化 外区域 衰减
  • 简介:从附加结构的角度将流形的多种概念有机地串联起来,并给出了一种直观理解流形、微分流形等抽象概念的新颖方式.同时,本文阐述了微分几何的主要特点、思想,介绍了与附加结构相关的流形分类问题、Poincare猜测等的研究情况.

  • 标签: 微分几何 流形 附加结构 POINCARE猜想 RICCI流