学科分类
/ 1
9 个结果
  • 简介:隐马尔科夫过程是20世纪70年代提出来的一种统计方法,以前主要用于语音识别,1989年Churchill将其引入计算生物学,目前HMM是生物信息学中应用比较广泛的统计方法。本文对马尔科夫过程和HMM进行了简明扼要的描述,并对其在CpG位置判别中的应用做了概括介绍。

  • 标签: 马尔科夫链 HMM CPG岛
  • 简介:在网络终端视频体验过程中,影响用户体验的两个关键指标为初始缓冲等待时间和卡顿缓冲时间,本文结合移动视频传输协议等相关知识,通过机理分析方法,对实验数据进行分析和挖掘,建立了初始缓冲时延映射模型与卡顿时长占比函数模型。并基于视频体验评分测试软件Speedvideo及其网络运营平台,对所在地多个区域进行了综合测试。

  • 标签: 视频体验 初始缓冲时延映射模型 卡顿时长占比函数模型 Speedvideo
  • 简介:现行普高课程标准实验教材书(包括职高教材)立体几何里,多面体部分的正棱锥是这样定义的:棱锥的底面是正多边形,且顶点到底面的垂足是底面的中心.我们在教学中常常会遇到一些似是而非的有关正棱锥的命题,稍不留神就会理所当然的得出一些错误结论.

  • 标签: 底面 棱锥 边长 实验教材 立体几何 课程标准
  • 简介:设{Ei:i∈I}是完备Riesz空间E中的一族理想,且Ei∩Ej=φ(i,j∈I,ij).文章引入理想族{Ei:i∈I}直和的概念,并给出一个表示定理.文章证明了:存在一个完备的正则Hausdorff空间X使得理想族的直和Riesz同构于C(X)其充要条件是对每个i∈I存在一个紧Hausdorff空间Xi使得EiRiesz同构于C(Xi).

  • 标签: 侧完备 理想 直和 Riesz同构
  • 简介:研究节能刮板沉降箱式除尘可修复系统,运用泛函分析的方法,特别是Banach空间上的线性算子半群理论,证明了严格占优本征值的存在性,并通过分析本质谱界经过扰动后的变化,进一步表明在一定的条件下,系统的动态解以指数形式收敛于系统的稳态解.并研究了该系统算子预解式的特性.对任意给定的δ〉0,γ=a+bi,-μ+δ〈a1≤a≤a2,得到||R(γ;A+B)||=0.进而得到在Rγ≥a1的右半平面内相应于系统算子A+B的谱点由有限个本征值组成.

  • 标签: 严格占优本征值 本质谱界 扰动 指数稳定性 预解式
  • 简介:研究具有周期修复函数的机器人与其连带的安全装置构成的系统的可靠性.运用泛函分析的方法,特别是Banach空间上的线性算子半群C0理论,证明了系统的适定性,并通过分析系统本质谱和经过扰动后半群的本质谱半径的变化,给出解的有限展开式。并进一步证明,O是系统的严格占优本征值,系统的非零本征值至多有两个,从而表明系统解以指数形式收敛.

  • 标签: 机器人 周期修复函数 严格占优本征值 本质谱 扰动 指数稳定性
  • 简介:改革开放以来,我国经济迅速发展,并取得举世瞩目的发展成就。尤其是近十多年以来,中国经济进入全面发展的黄金期。在国内经济持续发展的过程中,国内基础设施建设和房地产开发进入蓬勃发展期。因此,经济的持续增长使水泥等基础建筑材料产生了巨大的市场需求。

  • 标签: 水泥企业 改革开放 竞争力评价 企业财务 基础设施建设 A股
  • 简介:讨论了具有热储备和两个独立相同部件的平行系统在由常规错误引起失效下的渐进稳定性.首先,利用Banach空间的Volttera算子方程得到了非负动态解的存在唯一性;然后,利用强连续线性算子半群理论证明了系统正的动态解的存在唯一性,而由于初始值不在定义域内,故得到的是mild解.但在t>0时系统古典解存在唯一,所以此时mild解即为古典解.最后,利用线性算子半群稳定性的结果,证明了该动态解在范数意义下收敛到稳态解,进而得到了系统的渐进稳定性.

  • 标签: Volttera算子方程 C0-半群 渐进稳定性