简介:讨论了几何分布产品在步进应力加速试验TFR模型下寿命分布.给出了其寿命分布函数步进形式,在截尾样本场合利用极大似然估计方法和拟矩估计方法求出了未知参数的点估计,最后利用计算机模拟考察了说明本文方法的可行性.
简介:讨论了几何分布产品在步进应力加速试验TFR模型下寿命分布,给出了其寿命分布函数步进形式,在全样本场合利用极大似然估计方法和矩估计方法求出了未知参数的点估计,最后利用计算机模拟说明本文方法的可行性。
简介:研究了以剩余寿命作为增补变量的M/G/1/K排队模型.利用泛函分析中线性算子半群的积分半群理论讨论了该模型的瞬态解的存在唯一性问题.
简介:一、启发提问图6-51.如果6-5,在△ABC中,∠C=90°(1)如果∠A=45°,则a=.即:ab=,ba=.(2)如果∠A=30°,则c=a,b=a,即ab=,ba=.(3)如果∠A的大小一确定,那么ab和ba是否也随之而确定呢?2.在△ABC和△A′B′C′中,∠C=∠C′=Rt∠如果∠A=∠A′,则aba′b′反之如果ab=a′b′,则∠A=∠A′吗?二、读书自学 P20~P23三、读书指导1.正切、余切的意义如图(5)中,在△ABC中,∠C=90°,则:∠A的正切记为:tgA=∠A的( )∠A的( )∠A的余切记为:ctgA=∠A的( )∠A的( )其中∠A的大小一定,则tgA,c
简介:一、启发提问1.如图6-1,在△ABC中,∠C=90°.(1)如果∠A=30°,则ac=,bc=.(2)如果c=2a,则∠A=,∠B=.图6-1 图6-2 2.如图6-2,在△ABC中,∠C=90°.(1)如果∠A=45°,则ac=,bc=.(2)如果a=b,则∠A=,∠B=.3.在Rt△ABC和Rt△A′B′C′中:∠C=∠C′=90°.(1)如果∠A=∠A′,那么:BCAB=B′C′A′B′成立吗?(2)如果BCAB=B′C′A′B′,那么:∠A=∠A′吗?从上面的问题中我们不难看出在直角三角形中:如果某一个锐角的度数一定,则相应的直角边与斜边的比值也就随之确定,反之也成立.
简介:针对具有层次或聚类数据的多水平模型能准确地反映变量间基于层次框架下的关系,并给出不同层次数据的差异性估计及跨级相关估计,为具有层次结构数据的统计建模提供了重要的研究工具,在社会学、心理学、生物医学及经济学领域具有广泛的应用价值。本文简要介绍常用的多水平线性模型和多水平Logistic模型的构建过程,重点介绍其在经济领域中的应用。同时对多水平模型的估计理论、应用软件以及发展展望进行了讨论。
简介:一、问题提出一家鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的鞋的销售量如下:鞋的尺码(单位:厘米)2222.52323.52424.525销售量(单位:双)12511731 在这个问题上,鞋店关心的不是鞋的尺码的平均数,而是关心哪种尺码的鞋销售得最多的问题。因而将产生一种新的特征数字来描述这组数据的集中趋势.二、阅读教材 P162-P165三、自学指导1.什么是众数?在一组数据中,的数据叫做这组数据的众数.本概念的特点:范围:在一组数据中对象:其中的一个数据特征:这个数据出现的次数最多.2.什么是中位数?将一组数据按排列,把处在的一个数据(或)叫做这组数据的中位数.本概念特点:方式: