简介:本文刻划交换半群的强半格上的最小半格同余,并证明由此得到的商半群为对应的每个交换半群的商半群的强半格。
简介:证明了双诱导映射下L-Fuzzy子格群的像与逆像仍为L-Fuzzy子格群,基于L-Fuzzy集的层次结构特征,研究L-Fuzzy子格群的同态,给出了它们的性质.
简介:本文中用Kneser’s定理得到下列结论一个新的简单证法.设G为初等Abelp-群(运算用加法),S={a1,a2,…,an)为G的一个n项不含有零然的元素列(元素可允许重复),|s|=n=P^m-1+p-2,,其中P为素数,若对G的任意子群H,S最多含有|H|-1项,则:(1)当m=2时,∑^0(S)=G;(2)当m≥3时,∑(S)=G,特别有(1)Olson’猜想r(Zp+Zp)=2p-2;(2)r(+^mZp)=c(+^mZp)=p^m-1+p-2,m≥3.
简介:一、选择题(每小题4分,共28分)1.已知:如图D-1,BC切⊙O于B,∠AOB=110°,则∠ABC=( )(A)110° (B)55° (C)70° (D)35°图D-2图D-1 2.如图D-2,⊙O是Rt△ABC的内切圆,切点为D、E、F,∠C=90°,AC=6,BC=8,则AF+BE=( )(A)8 (B)6 (C)10 (D)123.两圆的直径分别为10和6,圆心距为4,则两圆的位置关系是( )(A)外离 (B)外切 (C)相交 (D)内切4.如图D-3,弦AB、CD相交于P,PA=3cm,PB=4cm,CD=8cm,且CP<PD,则CP=( )(A)2cm (B)6cm (C)2
简介:证明了转移函数是l∞的一个子空C1上的正的压缩C0半群,其极小生成元恰好是Markov积分算子半群的生成元在C1中的部分;Markov积分算子半群的生成元稠定的充分必要条件是q-矩阵Q一致有界;同时转移函数是Feller-Reuter-Riley的充要条件是Markov积分算子半群的生成元在c0中的部分产生一个强连续半群.最后,在序Banach空间给出了增加的压缩积分算子半群的生成定理.
简介:本文主要讨论有限特殊Church-RosserThue系统所表现的么半群上Green等价的数量性质.证明每种Green等价类都是正则集合,其个数或1或∞且多项式时间内可计算.同时获得一个关于有限特殊Thue系统描述能力的结论.