简介:研究具有反馈控制的单种群对数模型.通过构造适当的Lyapunov函数.我们让得系统的正平衡点是无条件全局稳定的.所得结果补充和完善了已有的结果.
简介:一个稳定的补偿器可同时镇定n个对象(同.时强镇定)等价于一个补偿器(不一定稳定)同时镇定n+1个对象(同时镇定).两个以上对象的同时强镇定和三个以上对象的同时镇定是线性系统中一个急待解决的公开问题.文中所作的基本假定是所有的对象具有相同的简单不稳定零点,在此条件下给出了n个对象同时强镇定的一个充分条件.当仅有一个不稳定零点时,容易检验是否同时强镇定,否则仅需确定n个对象的不稳定零点并且判定由不稳定零点导出一个相应矩阵是正定的,就能判定n个对象同时强镇定.因此是一个易于检验的充分条件.文章同时给出了n个对象同时强镇定的算法,丰富了同时强镇定的充分条件.
简介:讨论了具有时滞和反馈控制的离散Leslie概周期捕食与被捕食系统.利用差分不等式和通过构造适当的Lyapunov函数,得到了系统持久性和全局吸引的充分条件.利用泛函概周期的壳理论,得到了系统存在唯一全局吸引概周期解的充分条件.
简介:提出并研究具有反馈控制变量和Holling-Ⅱ类功能性反应的修正Leslie-Gower离散捕食系统的持久性问题,通过运用差分不等式得到了一组保证该系统持久的充分性条件.该结果表明反馈控制变量不会影响系统的持久性从而改进了已有的结果.数值模拟显示了本文结果的可行性.