简介:重金属污染是环境污染的主要指标之一。本文利用某城市实际观测数据,对该城市的重金属污染状况进行推断。首先利用地累积污染指数衡量重金属污染程度,进而基于克里金插值法和ArcGIS软件分析各重金属元素污染指数的空间分布特征,据此对重金属污染离子分类,并基于污染负荷指数比较不同功能区的污染程度。其次,采用Pearson相关性分析和主成分分析对所得分类进行合理性检验,并结合重金属来源分类的国家参考标准和污染物的分布特性,得出各类重金属离子的污染来源。最后,利用指数衰减模型,对所有样本的高程信息进行订正,并利用加权混合二元正态分布密度函数去拟合多污染源传播形成的浓度曲面,估计位置参数,确定出重金属污染源的具体位置。
简介:用K—Carleson测度刻画了B^α(B0^α)到QK的复合算子的有界性,以及B^α到QK,0的复合算子的有界性和紧性.
简介:本文利用一种积分平均函数给出了加权Dirichlet空间Dα。(α>-1)上的复合算子Cψ为Schattenp-类算子的充要条件.此结果包含了过去已有的关于Hardy空间及加权Bergman空间Aα(α>-1)上的复合算子的已有结论.主要定理是:设p>0,α>一1,ψεDa,则Cψ为Dα上的Schatten p-类算子的充要条件是存在δ>0,使得积分平均函数Φδ(z)=λ(D(z,δ))=1 integral form n=D(z,δ)τψ,α(ω)d-λ(ω)属于L2p(dv),其中D(z,δ)为伪双曲圆盘,τψ,α为Cψ关于Dα的确定函数;dv(z)=(1-|z|2)-2dλ(z),dλ为D上的就范面积测度.
简介:讨论了复平面内单位圆盘上的加权Orlicz-Bergman空间以及这些空间上的复合算子,给出了复合算子的范数估计及可逆性条件.
简介:利用上极限,给出了单位球上加权Bergman空间的加权复合算子的本性模的表示.
简介:术文讨论了加权Bergman空间到Zygmund空间(小Zygmund空间)的广义复合算子Cφ^h的有界性和紧性特征,得到了以下约结果:(1)Cφ^h是加权Rergman空间到Zygmund空间的有界算子和紧算子的充要条件;(2)Cφ^h是加权Bergman空间到小Zygmund空间的有界算子和紧算子的充要条件.
简介:本文在经典风险模型基础上,把索赔到达过程Nt加以推广为更新过程。且在保单到达非均匀的前提下,把保单到送过程推广为更新过程Mt,得到有限时间t孕余的瞬时分布ψ(u,θ0,t,α),然后求得时刻t的生存概率ψ(t,u,θ0)。
简介:设函数φ和Ф是复平面单位圆盘D上的解析函数且φ(D)■D,则将加权复合算子定义为Wφ,Ф:f→Фf°φ.当1
简介:本文研究一类带有扰动且舍相依索赔的复合二项风险模型,考虑两种类型的索赔:主索赔和副索赔,主索赔以一定的概率引起副索赔且副索赔可能以一定的概率延迟到下一个时间段发生.通过引入辅助模型,利用递归等方法,得到了该模型下的Gerber--Shiu折现罚金函数和破产概率的明确表达式.最后给出了索赔额服从几何分布的数值模拟.
简介:设H是一实Hillber空间,K是H之一非空间凸子集,设(Ti)i=1^N是N个Lipschitz伪压缩映象使得F=∩i=1^NF(Ti)≠Ф,其中F(Ti)={x∈K:Tix=x}并且{αn}n=1∞,{βn}n=1^∞包含[O,1]是满足如下条件的实序列(i)∑n=1^∞(1-αn)^2=+∞;(ii)limn→∞(1-αn)=0;(iii)∑n=1^∞(1-βn)〈+∞;(iv)(1-αn)L^2〈1,arbitaryn≥1;(v)αn(1-βn)^2+αm[βn+L(1-βn)-]^2〈1,其中L≥1是{Ti}i=1^N的公共Lipschitz常数,对于x0∈K,设{xn}n=1^∞是由下列定义的复合隐格式迭代xN=αnxn-1+(1-αn)Tnyn,yn=βnxn+(1-βn)Tnxn,其中Tn=TnmodN,则(i)limn→∞||xn-p||存在,对于所有的p∈F;(ii)limn→∞d(xn,F)存在,其中d(xn,F)=infp∈F||xn-p||;(iii)limn→∞inf||xn-Tnxn||=0.本文的结果推广并且改进H—K.Xu和R.G.Ori在2001年的结果和Osilike在2004年的结果,并且在这篇文章中,主要的证明方法也不同与H—K.Xu和Osilike的方法.
简介:刻画加权Bergman空间Aα^2(Ω)上的加权复合算子Cφ,Ф的Schatten-p类.