简介:本文利用对非牛顿粘性不可压缩流方程对时间t的解析性和长时间渐近性估计,具体构造了它的近似惯性流形,并得出收敛阶估计。
简介:研究一类二维无界区域中的等热双极不可压粘性非牛顿流体力学方程组,通过证明相应的解半群的紧性,得到整体吸引子的存在性.
简介:主要利用Leray-Schauder不动点理论研究Lienard方程周期边值问题{(x)+f(x)(x)+g(t,x)=e(t)x(0)=x(T),(x)(0)=(x)(T)的正解及多个正解的存在性.
简介:研究Kac方程的初值问题.证明了该类方程存在唯一的全局分布解.并且使用一种新的线性化方法证明了该类方程的解具有相应的多项式衰减性.
简介:本文主要讨论了Schnakenberg方程组的初值问题,首先用多重尺度方法求得Schnakenberg方程组的一阶近似解,然后利用非线性的Gronwall不等式对所求结果进行误差估计。