简介:设G是一个有限的简单连通图.D(G)表示V(G)的一个子集,它的每一个点至少有一个最大匹配不覆盖它.A(G)表示V(G)-D(G)的一个子集,它的每一个点至少和D(G)的一个点相邻.最后设C(G)=V(G)-A(G)-D(G).在这篇文章中,下面的被获得.(1)设u∈V(G).若n≥1和G是n-可扩的,则(a)C(G-u)=和A(G-u)∪{u}是一个独立集,(b)G的每个完美匹配包含D(G-u)的每个分支的一个几乎完美匹配,并且它匹配A(G-u)∪{u}的所有点与D(G-u)的不同分支的点.(2)若G是2-可扩的,则对于u∈V(G),A(G-u)∪{u}是G的一个最大障碍且G的最大障碍的个数是2或者是|V(G)|.(3)设X=Cay(Q,S),则对于u∈Q,(a)A(X-u)==C(G-u)和X-u是一个因子临界图,或者(b)C(X-u)=和X的两部是A(X-u)∪{u}和D(X-u)且|A(X-u)∪{u}|=|D(X-u)|.(4)设X=Cay(Q,S),则对于u∈Q,A(X-u)∪{u}是X的一个最大障碍且X的最大障碍的个数是2或者是|Q|.更多还原
简介:准确是判断解题的唯一标准,对填空题来说要求更高、更严格.用笔误等理由来解释错误原因有害无益.必须基本知识熟练,基本方法得心应手,联系与转换自如,辅以认真审题,明确要求,正确表达等,才能提高准确性.复习是更深层次的学习,我们完全可能把学生带到比较完善的境界.例1 若x2-2x-2=(x2-4x+3)0,则x=.错解 原方程即x2-2x-2=1,解出x1=-1,x2=3,∴填-1或3.错因,由于概念不清或者方程的转化不合理,疏忽了x2-4x+3≠0,产生增根.图G-13例2 如图G-13,PA、PB是⊙O的切线A、B是切点,∠APB=78°,点C是⊙O上异于A、B的任意一点,那么∠ACB=.错解