简介:利用Stroemberg-Torchinsky分解,给出了Triebel空间Fp-q(R^n,X)上算子值傅里叶乘子的一个充分条件.在n〈min(p,q)情形下,这里给出的充分条件改进了之前已知的结果.
简介:关于二元函数在一点的全微分存在的判别条件,一般教科书都是要求两个一阶偏导数在该点处连续(参见[1])。文献[2]削弱了这个条件,只要求其中一个一阶编导在该点处连续,文献[3]给出了全微分存在的另一个条件:要求两个一阶偏导数在该点的一个邻域内存在(但不要连续),及在邻域内至少存在一个有界的二阶混合偏导数。容易说明,〔2〕、〔3〕中判别条件的适用范围并不完全一样.从而〔2〕、〔3〕给出的都只是充分条件而非必要条件.讫今为止,尚未见到关于全微分存在的充分必要条件.本文将偏导数和全微分联系考虑,得到一个全微分存在的充分必要条件.作为这个充要条件的推论,可立即得出〔2〕、〔3〕中的判别条件.
简介:定义在C^n中具有逐块光滑边界的有界域上光滑函数的一种积分表示,这种积分表示的特点是积分式中含有局部的全纯核,且含有可供任意选择的实参数p,2≤p<+∝,利用这个公式,我们可获得有界域上-↑a-方程的局部解和证明在含参数局部意义下存在一致估计。
简介:讨论了几何分布产品在步进应力加速试验TFR模型下寿命分布,给出了其寿命分布函数步进形式,在全样本场合利用极大似然估计方法和矩估计方法求出了未知参数的点估计,最后利用计算机模拟说明本文方法的可行性。