学科分类
/ 22
423 个结果
  • 简介:左R-M称为Eω-内射,如果对环R中任意的ω阶Euclid理想I来说,任何R-模同态能够拓展为R-模同态。左R-M称为Eω-投射,若对环R中任意的ω阶Euclid理想I和任何R-模同态f∈HomR(M,R/I),存在R-模同态g∈HomR(M,R)使得f=πg,其中π是自然同态。本文证明P和Q均是Eω-投射当且仅当PQ是Eω-投射。进而,又证明了每一个左R-是Eω-投射的当且仅当每一个左R-是Eω-内射。

  • 标签: ω阶Euclid理想 Eω-内射 Eω-投射 短正合列
  • 简介:在本文中,主要讨论了(p,λ)-Koszul模范畴(Kλ~P(A))和线性表示模范畴(L(A))两者之间的关系.特别地,我们得到了KλP(A)=L(A)的一些充分必要条件.

  • 标签: (p λ)-Koszul模 有线性表示的模
  • 简介:阶微分方程非线性项f中含有未知函数“的二阶导数u”的情况下,运用Avery-Peterson不动点定理,研究了一类阶微分方程点边值问题个正解的存在性,得到了该类边值问题存在个正解的充分条件.

  • 标签: 边值问题 正解 Avery-Peterson不动点定理
  • 简介:2009届高学生正在进行积极紧张的备考,在高文科数学复习中,我们发现文科同学虽然明确数学学科将在“3+2选修”高考模式中所占的份量,前期投人了不少的时间和精力,但却收效甚微.那么如何作好复习策略的调整,找出差距,弥补不足就显得尤为重要.以下“十忌”就应引起注意.

  • 标签: 数学复习 文科 高三 高考模式 数学学科
  • 简介:数学复习对师生来说,时间紧、任务重,如何减负增效一直是一线教师孜孜以求的问题.笔者以为,采用变教学,从不同的角度加深对问题的理解,把握解题规律,提高解题质量,不失为一种有效的尝试.

  • 标签: 变式教学 高三 阿波罗 数学复习 解题
  • 简介:设F是一个特征不等于2的域,A是,上的一个可除代数。本文研究了A上多项环A[x1,X2,…,xn]中理想是有限生成的,以及它的Grobner基;也表明F[x1,x2,…,xn]中有限子集G是F[x1,x2,…,xn]的Griobner基当且仅当G是A[x1,x2,…,xn]中的Grobner基。

  • 标签: 理想 生成元 Grbner基
  • 简介:对于环R.一个右R被叫做主伪内射。若每一个从M的主子模到M的单同态可以扩张为M的自同态.主伪内射是主拟内射的推广.在本文中,我们给出了一些主伪内射的性质并讨论什么情况下主伪内射是主拟内射的问题.

  • 标签: 主拟内射 主伪内射 自同态环 CS
  • 简介:仅对一元次整系数多项在实数域内分解问题进行了研究,根据分解后其系数应为二次代数整数的特点,以及导出的二次方程判别的完全平方性质,得出了一元次整系数多项在实数域内能分解成两个二次因式乘积的条件及方法,从而解决了一元次整系数多项在实数域内的因式分解问题.

  • 标签: 整系数多项式 完全平方数 因式分解 实数域 二次代数整数
  • 简介:本文用则的术语给出了半单Artin环的刻划。得到如下个条件的等价性:(1)R是一个半单Artin环;(2)每一个R-都是正则;(3)每一个单纯R-都是正则

  • 标签: 正则模 半单 ARTIN
  • 简介:主要引进了伪i-内射半的定义,并根据对偶原则,参照k-投射半及内射的结论,得到了伪i-内射半的一些很好的性质,从而实现了把环中内射的某些性质在半环中内射半方面的部分推广.

  • 标签: i-正则同态 伪i-内射半模 真正合序列 可吸收半模
  • 简介:在本文中,我们定义了拟GP-内射,并且得到了关于它的一些结果.这些结果总结了GP-内射环和拟P-内射的一些结果.

  • 标签: GP-内射模 环和
  • 简介:对于环R.一个右R被叫做主伪内射,若每一个从M的主子模到M的单同态可以扩张为M的自同态.主伪内射是主拟内射的推广。在本文中,我们给出了一些主伪内射的性质并讨论什么情况下主伪内射是主拟内射的问题。

  • 标签: 主拟内射 主伪内射 自同态环 CS
  • 简介:确立了某类分块矩阵[M(11)M12XM21YM23ZM32M33]的最大秩公式,其中,X,Y和Z是个受限于元数线性矩阵方程A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2的变量矩阵.作为该公式的一项应用,我们推导出上述矩阵方程解集等同于某类元数次矩阵方程组A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2,XYZ=J解集的条件.

  • 标签: 四元数域 分块矩阵 线性矩阵方程 最大秩 三次矩阵方程 解集
  • 简介:本文引入一类特殊的实值函数(),并由此对Banach空间上凸函数的Fréchet可微性,更一般地,β-可微性进行了特征刻画.

  • 标签: 凸函数 可微性 次微分 连续模