简介:以我们在现实生活当中处理数据库的经验来看,为了从数据库中使用限制性的信息抽取方法得到有用的数据和信息,我们有必要使用"特点子集选择"的方法(FeatureSubsetSelection).而这种方法需要从多个相关的属性当中进行多次的试验从而找到某种特定的子集.在这种情况下,如何能够找到快速的、准确的同时又是简便的选择算法变得越来越关键.这篇文章对由Dr.RobertHoltes提出的"One-R"算法进行了适当的改进,通过"Chi"氏独立性检验和拜亚(BayesDecisionTheory)公式推导出的新方法,在试验的基础上表明,这种新的算法在某种程度上比原来的"One-R"算法要准确.