简介:探讨了交换半环上上三角矩阵代数的广义Jordan导子的刻画问题,证明了交换半环R上的上三角矩阵代数T_n(R)到T_n(R)-双模M的每个广义Jordan导子都可以分解成一个广义导子和一个反导子之和。
简介:半正定矩阵与正定矩阵在不等式的研究上有相当大的区别,将正定矩阵推广至半正定矩阵,需要用MoorePenrose逆来代替一般的逆。利用分块矩阵和Schur补得到了关于半正定矩阵Moore-Penrose逆的Had-amard积的几个偏序不等式。
简介:Brn+1filiform李代数是一类重要的filiform李代数,其对rigid李代数的分类起到了重要作用.本文通过求得Brn+1filiform李代数的极大环面证明了filiform李代数具有左对称代数结构.
简介:研究了广义Jacobi矩阵的特征值和特征向量问题,给出了一个特征对恰是广义Jacobi矩阵J的第j个特征对的充分必要条件。
简介:运用矩阵方法证明了Fibonacci数列的通项公式及Cassini公式,并对Cassini公式进行了推广,进而得到一个结论一由连续的mxr个Fibonacci数的k次方所组成的m行r列矩阵D^kram,,当r,m≥k+1,k=1,2,3时,矩阵的秩都为k+1.
简介:利用矩阵Schur补的性质,建立了若干关于半正定矩阵Hadamard乘积和普通加法的矩阵不等式,推广了相应的结果。