学科分类
/ 1
12 个结果
  • 简介:介绍了分队射击指挥模拟训练系统的概念,分析了模拟训练中语音通信机制.将语音识别系统引入模拟训练系统中,并就应用中存在的问题进行了探讨,提出了解决方法.

  • 标签: 模拟训练 语音识别 通讯
  • 简介:在普通话水平测试(简称为PSC)中严格按照国家语委制定的普通话水平等级标准(试行),对应试人的普通话水平进行界定,是保证测试科学、公平、真实的基础。在普通话水平测试工作中,测试员根据应试人保留或残留的方言语音痕迹进行评分定级,是一个庞大而又细致的研究课题。本文从语音方面入手,对新疆汉语方言区普通话水平测试各等级进行分析,以期准确描述出各等级的语音面貌。

  • 标签: 新疆汉语方言 普通话水平测试 等级 语音面貌
  • 简介:在载荷识别研究中,时域内载荷识别在其逆传系统载荷识别的研究,目前一般停留在最小相位可逆系统上,基于时间序列模型的逆传系统法系统动态载荷识别理论,提出了一种新的研究方法,克服了传统载荷识别方法对结构的边界条件仅仅局限于可逆系统,并利用计算机仿真验证了该方法不但适用于可逆系统,而且对不可逆系统的载荷识别同样有效.

  • 标签: 载荷识别 逆传系统法 可逆系统 不可逆系统
  • 简介:在完成重大任务、应对重大事件中考察和识别干部,一般来说,能够比较真实全面地了解干部。因此,应当把非战争军事行动作为考察和识别干部的重要渠道。

  • 标签: 非战争军事行动 干部 识别 中考 重大事件
  • 简介:针对传统军事命名实体识别方法存在人工构建特征复杂和军事文本分词不准确等问题,提出了一种基于深度学习的军事命名实体识别方法。结合双向长短时记忆(Bi-directionalLongShort-TermMemory,Bi-LSTM)神经网络对较长句子上下文的记忆能力、字向量(characterembedding)对汉字语义的表示能力和条件随机场(ConditionalRandomField,CRF)对标注规则的学习能力,构建了character+Bi-LSTM+CRF实体识别模型。为验证方法的有效性,在军事想定语料集上进行了实验,结果表明:该方法比传统方法识别效果好,识别准确率、召回率和F值均大幅提升。

  • 标签: 军事命名实体 命名实体识别 深度学习
  • 简介:针对新型作战体系下以装甲车辆为主的地面目标的被动声识别问题,为实现不同车型在不同工况下的声识别,以常见的3种坦克和4种履带式装甲车为识别对象,提出了一种基于变分模态分解(VariationalModeDecomposition,VMD)和人工蜂群(ArtificialBeeColony,ABC)算法优化的支持向量机(SupportVectorMachine,SVM)相结合的装甲车辆声识别模型。首先,采集不同工况下的车辆噪声信号并进行频谱分析,证明了VMD分解的可行性;其次,对样本信号进行VMD分解,得到不同尺度的本征模态函数(IntrinsicModeFunction,IMF)并进行多尺度模糊熵(Multi-scaleFuzzyEntropy,MFE)的计算,得到多尺度模糊熵特征(VMD-MFE);然后,利用优化算法对SVM进行优化,得到最优参数优化的分类器模型;最后,对噪声信号进行特征提取和分类实验。结果表明:VMD的分解效果优于经验模态分解(EmpiricalMadeDecomposition,EMD)和集合经验模态分解(EnsembleEmpiricalModeDecomposition,EEMD);与引力搜索算法(GravitationalSearchAlgorithm,GSA)和布谷鸟搜索(CuckooSearch,CS)算法相比,ABC算法得到的优化模型ABC-SVM具有更高的识别率,可达94.14%以上。

  • 标签: 模态分解 多尺度熵(MSE) 支持向量机(SVM) 人工蜂群(ABC)算法 被动声识别
  • 简介:为进一步提高弹道导弹目标多传感器综合识别正确率,提出了一种基于二维主成分分析(Two-DimensionalPrincipalComponentAnalysis,2DPCA)的多传感器特征级综合识别方法。该方法将多个传感器的特征集经标准化后组合成二维特征矩阵,引入图像压缩技术中的2DPCA方法进行特征提取,然后将其用于弹道导弹目标特征级融合识别。以3部雷达部署下弹头目标的雷达散射截面积(RadarCrossSection,RCS)特征融合为例进行仿真验证,结果表明:相比于传统的主成分分析(PrincipalComponentAnalysis,PCA),2DPCA的识别率更高,计算复杂度更低,为弹道导弹目标识别提供了一种新的思路。

  • 标签: 弹道导弹 目标识别 特征级融合 二维主成分分析(2DPCA) 二维特征矩阵
  • 简介:为提高无人车行驶过程中前方车辆检测的准确性和实时性,提出了基于激光雷达(LIghtDetectionAndRanging,LIDAR)深度信息和视觉方向梯度直方图(HistogramsofOrientedGradients,HOG)特征的车辆识别和跟踪方法。目标首次进入视野时,聚类处理激光雷达深度信息并确定假设目标的候选区域,采用车辆尾部的HOG特征对假设目标进行验证。在HOG特征验证前,基于最小二乘支持向量机(LeastSquaresSupportVectorMachine,LS-SVM)算法对样本集HOG特征进行训练学习,生成车辆分类器模型。对于验证后的目标车辆,采用激光雷达获取的深度信息对目标车辆进行持续跟踪。构建了2种车辆模型,结合最小二乘直线拟合方法提取出车辆特征,生成目标模型。同时,提出了基于多特征马氏距离的目标关联代价方程,实现了多目标的关联;完成了基于卡尔曼滤波的车辆状态滤波和位置估计,更新了跟踪器模型。通过有效的管理策略,实现了目标跟踪的3个状态:1)初始化模型的生成;2)跟踪过程中跟踪器的更新与预测;3)目标驶离视野时跟踪器的删除。最后,通过试验验证了跟踪算法的有效性。

  • 标签: 激光雷达(LIDAR) 视觉 车辆识别 车辆跟踪 数据关联
  • 简介:2016年2月,美国陆军发布新版单兵地面防空用《目视飞机识别手册》,以更新替换2006年1月出版的该系列战场手册。美国陆军训练与条令处为该出版物的筹备机关,著名军事研究机构火力卓越中心和希尔堡对手册发行提供了评估支持。

  • 标签: 美国陆军 手册 F-35 识别 飞机 地面防空
  • 简介:传统的敌我识别系统已经不适应信息化作战的要求,现提出了一种以Cygnal公司的嵌入式单片机C8051F020为核心的新型敌我识别系统设计方案,给出了该系统的硬件结构框图和程序流程图.该方案与现有系统相比有很大的技术改进,利用了扩频技术、纠错编码技术、最新的加密标准和GPS系统,各方面性能有了显著提高.

  • 标签: 敌我识别系统 微控制器 无线扩频收发模块 GPS接收机