简介:早在1998年,NASA航天技术部进入空间战略目标管理者就指派空间推进协作组(SPST)启动一项可使得优先推进技术发展途径明晰化的研究项目。这些技术发展一旦实现,将很好地满足战略发展目标。该项研究着重于地球轨道和行星转移技术。与NASA太空科学部联合进行的一项独立的研究则在于说明为满足星际运输要求需要解决的技术。该项工作的首要目标是确定为完成较宽范围空间发射任务要求的关键技术和提供一个允许对技术进行比较和按优先级排序的框架。该项研究的结果预计可作为支持实现NASA空间推进目标的未来技术发展基金的优先建议。系统与技术分组的任务是确定所有候选的技术和提供评估过程,包括可用于对这些技术进行比较的白皮文件形式的资料。
简介:首先通过比较太阳系各天体探测所需速度增量与各种推力器能达到的喷射速度,阐明核推进对于太阳系探测的重要性;随后,在简要介绍几个典型的基于核推进的空间任务设计方案后,通过参数化宇航动力学分析,阐明在当前或近期可达到的技术水平下,基于各种核推力器的航天器所能实现的任务能力,并比较分析各自的优劣,指明改进方向。分析表明,化学推进的适用范围极其有限,要真正实现太阳系内广阔区域的大规模探索开发,必须依靠核推进;基于固堆核热推进的当前技术指标已经能够满足相当一部分雄心勃勃的航天任务需要,在不远的将来实现广泛应用是可以预期的;核电推进尽管在技术上已经可以实现,但要能够在近期的航天愿景任务中获得超越固堆核热推进的优势,尚须在技术上实现进一步突破,尤其需要大幅降低核电源质量。
简介:高空点火瞬态过程是液氧/甲烷火箭发动机工作过程中流动非常复杂、燃烧很不稳定的阶段。为了验证喷注流量不均是否为导致点火压力峰升高的重要因素,采用瞬态仿真对该过程进行数值模拟。在无喷注不均的情况下,得到了推力室各特征截面的温度和压力分布的时序演化,以及推力室侧壁及喷注器面上给定测点的压力分布时序,揭示了高空点火过程中着火点的位置特征及压力波在喷注器面的振荡过程。接下来设置了喷注流量不均的多种工况,发现喷注流量不均不会改变推力室侧壁最大压力峰值,只是改变最大压力峰值位置,但却明显增强了压力波对喷注器面的冲击,尤其使以隔板为界的内圈喷嘴所受的平均最大压力峰值达到了推力室稳态压力的30倍,从而验证了喷注流量不均是引起点火烧蚀的一个重要因素。
简介:本文讨论了维持美国商用空间运载工业将来竞争地位的战略与途径。在研究运载工业的基础上,现有民用运载系列通过技术改造能保持竞争地位至2005年,技术改造的焦点在于减少成本,提高费用效率。为了实现改进,提高了一项包括研究、技术和先进发展的论证计划。因为在运载系统成本中,推进系统占有显著比重,这就为采用新技术以减少成本提供了很大的潜力。推进系统近期的一些关键领域和设计方案的改进得到了验证。
简介:空间推进系统可靠性评估时,采用Lindstrom-Maddens(L-M)法评估比传统方法得到的结果更高。对比分析评估数据后发现L-M法更合理,因此建议采用L-M法进行可靠性评估,可以在满足可靠性指标前提下防止对产品提出过分苛刻的要求,从而降低设计难度和减少试验费用。
简介:本文对燃烧过程进行探索,而燃烧过程决定了液体火箭发动机的燃烧不稳定性.为了深入地阐明燃烧不稳定性机理,采用一种能够准确预测各种擅击式喷注器的推力室最可能维持的燃烧不稳定性振型的经验相关式,与特征时间分析法结合,形成一个燃烧稳定性的试验研究大纲.在初步研究结果的基础上,对撞击式喷注器射流的雾化特点进行广泛而深入的研究.在冷试中测量了液雾扇破碎长度、液滴尺寸分布以及雾化频率.观测到三种非常有意义的现象:雾化频率与稳定性相关式所预测的最可能发生的燃烧不稳定性的频率相似;随着平均液滴直径尺寸的增加,所预测的稳定燃烧的裕度相应增加;随着液滴尺寸分布的散布度的增加,所预测的稳定燃烧的裕度也相应增加.这些所观察到的现象与燃烧不稳定性理论相当一致,从而说明,周期性的雾化过程和高的能量释放密度是燃烧不稳定性机理中的两个关键因素.