简介:采用在还原碳化法制备WC粉末前添加稀土氧化物Y2O3或CeO2,以及在WC与Co粉末混合球磨时加入该稀土氧化物两种不同的方式,在WC-10Co硬质合金中添加稀土元素,利用金相显微镜和扫描电镜观察稀土硬质合金的组织形貌与显微结构,采用X射线衍射仪(XRD)和电子探针对合金的相成分与微区成分进行分析,并测试合金的硬度、断裂韧性与磁性能,研究稀土及其添加方式对硬质合金结构与性能的影响。结果表明,无论以何种方式添加Y2O3或CeO2,最终制备的硬质合金中稀土元素都与氧共存,并以球形颗粒的形式弥散分布于硬质合金的钴粘结相中。稀土硬质合金中WC晶粒球化趋势明显,WC/WC的邻接度由0.6降低至0.39,断裂韧性由12.8MPa?m1/2提高至16.7MPa?m1/2。球形、弥散分布的稀土氧化物颗粒会破坏合金结构的连续性,导致合金强度降低。
简介:利用赤泥、钢渣和滑石为原料,在没有特殊添加剂的情况下,经过模压成形与烧结制备赤泥/钢渣陶瓷材料。通过高倍电镜、差热分析与x射线衍射对材料的形貌与结构进行观察与分析,并测试吸水率与抗弯强度,研究原料的成分与粒径对陶瓷材料性能的影响。结果表明,赤泥/钢渣陶瓷材料的主晶相为透辉石和钙长石。原料粉末粒度越小,陶瓷的性能越好;赤泥用量为70%时材料的性能最佳。综合考虑陶瓷砖块的性能与能源消耗,采用烧结温度为1170℃,选用粒径小于74gm的原料粉末,在赤泥、转炉钢渣和滑石的用量分别为60%~70%、20%~30%~H10%条件下制备赤泥/钢渣陶瓷材料,材料的显气孔率和吸水率都达到建筑陶瓷的国家标准(GB/T4100.2006)技术要求的0.73%和0.03%,抗弯强度超过88MPa。
简介:将铜粉和碳粉分别按质量分数为Cu-2%C和Cu-8%C配比混合,经过高能球磨得到铜-碳复合粉末,然后冷压成形,压坯在H2气氛、820℃温度下烧结2h,获得铜-石墨块体材料。采用X射线衍射、扫描电镜、透射电镜以及电导率测试仪等对高能球磨后的复合粉末和块体材料的物相组成、微观组织结构与导电性能进行分析,研究球磨时间与碳含量对铜-碳复合粉末与块体材料的组织结构及性能的影响。结果表明,铜碳混合粉末经高能球磨,得到亚稳态Cu(C)过饱和固溶体,经固相烧结后形成“蠕虫状”组织。随球磨时间延长,材料密度先增加后减小,球磨24h时密度最大,Cu-2%C和Cu-8%C材料的密度分别为7.58g/cm3和6.79g/cm3;电导率随球磨时间延长而增加,球磨72h时Cu-2%C和Cu-8%C的电导率分别为54.2%IACS和33.0%IACS。
简介:在M-2000型摩擦磨损实验机上,以GH4169合金环为配副,对以粗糙层/光滑层/树脂炭(RL/SL/RC)为基体炭的C/C复合材料和拟用作航空发动机轴间密封环的高强石墨的滑动摩擦磨损性能进行对比研究。结果表明,随着时间延长,C/C复合材料的摩擦表面逐渐形成完整、致密的摩擦膜,因而摩擦因数逐渐降低,趋于平稳,在60~180N载荷下,摩擦因数仅为0.11~0.18;而石墨材料摩擦因数在试验开始后迅速上升,达到动态平衡后保持小幅度的增长趋势,在60~180N载荷下其摩擦因数为0.23~0.28。与高强石墨相比,C/C复合材料还具有更小的体积磨损,更适用于发动机轴间密封环材料。
简介:引入“固态扩渗+轧制”的表面改性方式,即在研究镁合金薄板表面改性方法及工艺的基础上,采用固态粉末包覆热扩渗的方法,对AZ31镁合金薄板进行表面改性处理,获得研究目标材料;借助有限元软件Ls—DYNA模拟其冷轧过程,获得最优的轧制工艺参数并进行轧制实验,通过x.射线衍射(xRD)、金相显微镜、布氏硬度测量计、往复式摩擦磨损试验机和CorrTest腐蚀电化学测试系统检测材料表面的组织与性能。结果表明:轧制变形后的表面组织晶粒更加细小、均匀;耐磨性有所改善,表面硬度由HB61.4提高至HB63.5,摩擦因数由0.52变为0.6,表面摩擦磨损质量损失由0.33mg降低至0.26mg;表面耐腐蚀性能显著提高,其开路电位由-1.594V变为-1.574V,自腐蚀电位由-1.574V变为-1.38V,自腐蚀电流密度由6.2×10-3mA/cm2变为7.0×10-4mA/cm2。
简介:采用Al-3.8Cu-1.0Mg-0.75Si铝合金粉末,分别在高纯氮气、高纯氩气、高纯氢气和分解氨等4种气氛下烧结,对比研究不同烧结气氛下制备的合金致密度、力学性能、尺寸变化和显微组织等性能。同时研究高纯氮气气氛下烧结温度对合金性能的影响。结果表明,在590℃烧结温度条件下,高纯氮气气氛中烧结的合金性能最佳,密度达2.66g/cm3、致密度为97.1%,硬度为23HRB,抗拉强度为205MPa,尺寸收缩率为1.65%;高纯氢气中烧结的合金密度、硬度及强度都最低,抗拉强度为96MPa,屈服强度只有74MPa,合金组织中存在大量孔隙。随烧结温度升高,烧结坯中的液相逐渐增多,使合金烧结密度增大,强度提高,在590℃烧结的合金抗拉强度最高,为205MPa;610℃烧结时产生过烧现象,元素偏析严重,合金性能下降。
简介:首先采用高浓度湿磨法制备超细WO3-CuO混合粉末,800℃空气中焙烧90min后得到CuWO4-WO3前驱体粉末,再通过氢气还原获得超细W-Cu复合粉末。将该复合粉末与直接还原超细WO3-CuO混合粉末所得的W-Cu复合粉末进行对比,并研究还原温度对W-Cu复合粉末的微观形貌、成分与粒度的影响。结果表明:经过30h高浓度湿磨,WO3-CuO混合粉末的中位径由44.88μm降至0.28μm,焙烧后得到的CuWO4-WO3粉末平均粒径小于0.7μm且分散良好。由CuWO4-WO3还原获得的W-Cu复合粉末细小、分散均匀,还原温度对其形貌影响不大,由WO3-CuO混合粉末直接还原得到的W-Cu复合粉末由大量W-Cu纳米颗粒构成,随还原温度升高,纳米W-Cu颗粒逐渐长大。
简介:利用雾化沉积炉制备喷射成形2060高速钢沉积坯,经过锻造后再进行盐浴淬火和回火处理,研究喷射成形2060高速钢及其热处理后的组织与力学性能。结果表明:喷射成形2060高速钢沉积坯的表面较光洁,无明显的宏观偏析,晶粒较细小,晶粒尺寸约为20邮1,沉积坯的相对密度在99.5%以上;沉积坯中主要存在M6C和MC两种碳化物相,均匀弥散分布在晶界与晶内以及基体中,氧含量只有1.6×101左右。2060高速钢的抗弯强度随淬火温度升高而逐渐降低,淬火温度应低于1210℃。在1170-1190℃下淬火时可获得抗弯强度≥3000MPa、硬度≥70HRC的良好综合力学性能。
简介:以四氯化锡和氨水作为原料,采用水热合成法制备SnO2纳米粉体。探讨反应溶液浓度、水热合成温度、水热合成时间和初始溶液pH值对纳米SnO2粉体性能及形貌的影响规律,并确定最佳工艺参数,同时对水热合成过程中出现的SnO2纳米棒异常现象进行初步分析。结果表明:采用水热合成法制备的SnO2纳米粉体均为四方晶系金红石型结构,粉末粒径为5~12nm,呈近球形。在反应溶液浓度0.5~2.0mol/L条件下,随反应溶液浓度升高,制备的粉体晶粒平均粒径呈线性增长;在水热合成温度160~220℃范围内,随温度升高,SnO2粉体的平均粒径从5.1nm增大到9.8nm,在200℃时会出现降低;在水热合成时间6~30h条件下,随反应时间延长,SnO2粉体的平均粒径增大,在20h时降低;随溶液pH值升高,制备的粉体晶粒平均粒径减小。在1.0mol/L、pH值10的反应溶液中,在200℃保温20h的工艺条件下进行水热合成反应,所制备的粉体平均粒径为5.5~8.5nm,粉体均匀性和分散性良好。