简介:利用地表太阳总辐射和散射辐射对LongandAckerman(2000)的云检测算法进行了改进,提高了云判别的准确率。首先采用比值概率密度峰值法,初步选出晴天时刻。然后根据晴天时刻的地表太阳总辐射和太阳天顶角余弦值,拟合得到该日晴天总辐射近似表达式。在此基础上,计算各时刻实际观测值与用该拟合式估计的总辐射的比值,并再次利用比值概率密度峰值法,判断该时刻的天空状况。最后利用全天空成像仪观测资料和站点天气记录结果检验算法,结果表明,在天顶角小于75°条件下,本算法判断准确率平均达90.9%。改进的云检测算法减少了因水汽柱总量、气溶胶浓度和系统测量偏差的日变化及天顶角变化造成的误差。应用该检测算法,得到了香河和太湖两地云El发生频率并分析了云地表辐射强迫季节变化特征。两地云出现频率和云地表短波辐射强迫均夏季最大,春秋次之,冬季最小,太湖站云出现频率的季节变化幅度不及香河。香河云地表短波辐射强迫年平均为-39.5W·m-2,春夏秋冬季节平均分别为-25.9W·m-2、-70.9W·m、-51.1W·m-2、-10.8W·m-2。太湖云地表短波辐射强迫年平均为-66.2W·m-2,春夏秋冬季节平均分别为-84.6W·m-2、-89.1W·m-2、-50.2W·m-2、-44.1W·m-2。
简介:云状的正确观测对降水测报具有指示性意义,云状自动识别技术是气象要素自动化观测领域的难题之一.本文基于全天空可见光成像仪采集的云图与中红外热像仪获取的云图结合,对天空云状进行分类和测量.结果表明:通过在北京、杭州和丽江气象台站采集的大量云图,从云图特征和降水指示性方面将云状划分为Clear、CH、CL、CB及CM共5类.选取14个色彩和纹理特征值作为云状计算参数,采用552张云图作为训练样本,信息分类利用特征值加权最小距离算法,对于5类50个被测样本进行云状的判别.对应自拟的标准云状分类,平均准确率为82%.基于可见光-红外图像信息融合的云状识别方法结合了可见光图像色彩信息丰富的特点及红外图像可以降低雾霾干扰的优势,对比单-可见光传感器云测量,准确性有所提高.本文在可见光与红外图像传感器等多种云观测设备的信息融合方面进行了有益的尝试.
简介:选取QIN和SOB两种代表性劈窗算法对辽宁地区地表温度进行反演,并分析二者的精度和误差分布。结果表明:QIN和SOB算法反演的地表温度(Ts)与地面气象台站准同步观测的气温和地温的线性拟合显著,SOB算法线性拟合更好;从误差分布直方图可知,两种算法的反演结果与地温更接近,SOB算法与同步气温和地温在±2.0℃之间的误差比例略高于QIN算法;在野外开展与卫星遥感空间尺度一致的地表温度观测试验,QIN和SOB算法与实测值的平均绝对误差均为1.5℃;与NASA官网发布的地表温度产品对比发现,QIN和SOB算法的平均绝对误差分别为1.75℃和1.70℃;因此,QIN和SOB算法在辽宁地区均适用,而SOB算法误差较小。
简介:运用西藏羊八井观测站2009-2010年近1年的高时空分辨率全天空图像资料分析了测站上空的日间云量特征。年平均总云量统计结果为5.2;冬夏季节云量分布差别明显,夏季平均云量大,冬季小;无云、少云天气多出现在冬季上午,而夏季午后满云情况较多;1-4月及11、12月(冬半年)云量日变化特征明显,上午逐步增加,至17:00(北京时间)左右到达高值,随后逐步下降,形成白天云量渐多夜间云量消散的“循环”过程。运用该地资料还分析了运用时问概率方法估算的点云量与实际云量的差异,小时平均结果显示无云及满云天气条件下二者云量一致性较高,而对中等云量天气二者相差较大。更长时间尺度(天平均)的统计对比表明,随着统计样本增加二者差距缩小。总体来看少云天气情况下点概率云量估算低于实际天空云量,当天空多云时点概率云量则大于实际天空云量。
简介:依据气温间的空间相关性,将地统计学中的普通克里金法(OrdinaryKriging,OK)引入地面气温资料的质量控制。考虑气温在空间上的连续性,提出一种基于高斯模型改进的普通克里金(ImprovedOrdinaryKriging,IOK)质量控制方法。为评估该方法的性能,运用IOK法对江苏省67个台站2008年地面日平均气温资料进行质量控制,并与OK法以及反距离加权法(InverseDistanceWeighted,IDW)进行比较。试验结果表明,IOK法的检验效果优于OK法与IDW法,且稳定性与适用性较高,能有效地标记出气温观测数据中的可疑数据。