简介:核主分量分析是一种输入输出特征非线性变换技术。选择最优或接近最优的非线性变换核函数参数,使类的可分性测度最大,是KPCA应用于特征提取的关键。本文采用高斯变异遗传算法作优化技术,实现了KPCA和GA的集成,适合核函数参数的优化选择。仿真表明,该技术可行、有效。
基于遗传算法的核函数参数优化