简介:摘要目的探讨生物强度电场对人表皮细胞株HaCaT和小鼠表皮细胞运动性及CD9表达的调节作用。方法采用实验研究方法。取对数生长期人永生化表皮细胞株HaCaT细胞及分离自16只1~3 d龄雌雄不拘BALB/c小鼠的原代表皮细胞进行实验。将HaCaT细胞分为200 mV/mm电场强度处理3 h的加电组和模拟处理的假电组,在活细胞工作站中观察细胞迁移(运动方向、位移速度、轨迹速度,加电组样本数为46、假电组样本数为34)及排列,免疫荧光法检测CD9蛋白的分布及表达。将HaCaT细胞与小鼠表皮细胞均分为假电组(模拟处理)和进行相应电场强度处理3 h的50 mV/mm组、100 mV/mm组、200 mV/mm组、400 mV/mm组,将HaCaT细胞与小鼠表皮细胞均分为未行处理的空白对照组和用200 mV/mm电场强度分别处理相应时间点的1 h组、3 h组、6 h组,蛋白质印迹法检测CD9的蛋白表达(样本数为3)。对数据行Mann-Whitney U检验、单因素方差分析、独立样本t检验及LSD检验。结果处理3 h内,加电组HaCaT细胞明显趋向负极移动,假电组HaCaT细胞围绕原点随机运动;与假电组比较,加电组HaCaT细胞方向性显著增强,位移速度、轨迹速度显著加快(Z=-3.975、-6.052、-6.299,P<0.01)。处理3 h后,加电组HaCaT细胞长轴与电场方向垂直,假电组HaCaT细胞呈任意取向排列。处理3 h后,加电组HaCaT细胞CD9蛋白(均位于细胞膜上)相对表达量明显低于假电组(t=4.527,P<0.01)。处理3 h后,假电组、50 mV/mm组、100 mV/mm组、200 mV/mm组、400 mV/mm组HaCaT细胞、小鼠表皮细胞CD9蛋白表达量分别为0.332±0.021、0.283±0.032、0.254±0.020、0.231±0.041、0.212±0.031与0.565±0.021、0.453±0.022、0.389±0.020、0.338±0.021、0.233±0.011。对于2种细胞而言,与假电组比较,电场处理4组细胞CD9蛋白表达量均明显降低(P<0.01);与50 mV/mm组比较,另外3个电场强度处理组细胞CD9蛋白表达量均明显降低(P<0.01);与100 mV/mm组比较,200 mV/mm组、400 mV/mm组细胞CD9蛋白表达量均明显降低(P<0.01);与200 mV/mm组比较,400 mV/mm组细胞CD9蛋白表达量明显降低(P<0.01)。空白对照组、1 h组、3 h组、6 h组HaCaT细胞、小鼠表皮细胞CD9蛋白表达量分别为0.962±0.031、0.784±0.020、0.531±0.021、0.409±0.011与0.963±0.031、0.872±0.031、0.778±0.040、0.591±0.041。对于2种细胞而言,与空白对照组比较,1 h组、3 h组、6 h组细胞CD9蛋白表达量均明显降低(P<0.01);与1 h组比较,3 h组、6 h组细胞CD9蛋白表达量均明显降低(P<0.05或P<0.01);与3 h组比,6 h组细胞CD9蛋白表达量明显降低(P<0.01)。结论生物强度电场可使HaCaT细胞发生定向迁移和排列,可下调HaCaT细胞和小鼠表皮细胞中CD9的表达,且呈电场强度与处理时间依赖性。
简介:摘要目的研究高糖微环境下P62蛋白对人表皮细胞株HaCaT迁移和运动性的影响及其可能的分子机制,以探讨糖尿病足创面难愈合的机制。方法采用实验研究方法。取对数生长期HaCaT进行实验。取细胞,按随机数字表法(分组方法下同)分为正常对照组(培养液含终物质的量浓度5.5 mmol/L的葡萄糖)及高糖(培养液含终物质的量浓度30.0 mmol/L的葡萄糖)24 h组、高糖48 h组、高糖72 h组。正常对照组细胞行常规培养72 h,高糖72 h组细胞行高糖培养72 h,高糖48 h组细胞先常规培养24 h再高糖培养48 h,高糖24 h组细胞先常规培养48 h再高糖培养24 h后,采用蛋白质印迹法检测P62蛋白表达。取细胞,分为正常对照组、高糖组,分别同前培养48 h后,采用免疫荧光法检测P62蛋白表达(以绿色荧光表示)。取细胞,分为阴性对照小干扰RNA(siRNA)组、P62-siRNA-1组、P62-siRNA-2组、P62-siRNA-3组,并转染相应试剂,于转染后72 h,采用蛋白质印迹法检测P62蛋白表达。取细胞,分为正常糖+阴性对照siRNA组、正常糖+P62-siRNA组、高糖+阴性对照siRNA组、高糖+P62-siRNA组,并行相应处理,于转染后72 h,采用蛋白质印迹法检测P62蛋白表达;行划痕试验检测并计算划痕后24 h细胞迁移率(样本数为9);在活细胞工作站下,观察3 h内细胞运动范围并计算运动速度(正常糖+阴性对照siRNA组、正常糖+P62-siRNA组、高糖+阴性对照siRNA组、高糖+P62-siRNA组观察细胞数分别为76、75、80、79个)。取细胞,分为正常糖+磷酸盐缓冲液(PBS)组、高糖+PBS组、高糖+N-乙酰半胱氨酸(NAC)组,行相应处理后,于培养48 h,分别采用蛋白质印迹法及免疫荧光法检测P62蛋白表达。除划痕试验外,其余实验各组样本数均为3。对数据行单因素方差分析、LSD检验。结果与正常对照组比较,高糖24 h组、高糖48 h组及高糖72 h组细胞P62蛋白表达量均明显增加(P<0.01)。培养48 h,高糖组细胞中P62的绿色荧光强于正常对照组。转染后72 h,与阴性对照siRNA组比较,P62-siRNA-1组、P62-siRNA-2组和P62-siRNA-3组细胞P62蛋白表达量均明显减少(P<0.01)。转染后72 h,与正常糖+阴性对照siRNA组比较,正常糖+P62-siRNA组细胞P62蛋白表达量明显减少(P<0.01),高糖+阴性对照siRNA组细胞P62蛋白表达量明显增加(P<0.01);与高糖+阴性对照siRNA组比较,高糖+P62-siRNA组细胞P62蛋白表达量明显减少(P<0.01)。划痕后24 h,与正常糖+阴性对照siRNA组[(55±7)%]比较,正常糖+P62-siRNA组细胞迁移率明显升高[(72±14)%,P<0.01],高糖+阴性对照siRNA组细胞迁移率明显下降[(37±7)%,P<0.01];与高糖+阴性对照siRNA组比较,高糖+P62-siRNA组细胞迁移率明显升高[(54±10)%,P<0.01]。观察3 h内,高糖+阴性对照siRNA组细胞运动范围较正常糖+阴性对照siRNA组缩小,正常糖+P62-siRNA组细胞运动范围较正常糖+阴性对照siRNA组增大,高糖+P62-siRNA组细胞运动范围较高糖+阴性对照siRNA组增大。与正常糖+阴性对照siRNA组比较,正常糖+P62-siRNA组细胞运动速度明显增加(P<0.01),高糖+阴性对照siRNA组细胞运动速度明显下降(P<0.01);与高糖+阴性对照siRNA组比较,高糖+P62-siRNA组细胞运动速度明显增加(P<0.01)。培养48 h,与正常糖+PBS组比较,高糖+PBS组细胞P62蛋白表达量明显增加(P<0.01);与高糖+PBS组比较,高糖+NAC组细胞P62蛋白表达量明显减少(P<0.01)。培养48 h,高糖+PBS组细胞中P62的绿色荧光强于正常糖+PBS组,而高糖+NAC组细胞中P62的绿色荧光弱于高糖+PBS组。结论在HaCaT中,高糖微环境可促进P62蛋白表达;敲减P62蛋白可促进其迁移并增加运动性;高糖微环境下活性氧增加可能是P62表达增加的潜在机制。
简介:摘要:猪附红细胞体病是一种由猪附红细胞体病毒(PPV)引起的疾病,对养猪业造成了严重的经济损失。准确的诊断和及时的治疗对于控制和预防该病具有重要意义。本文综述了猪附红细胞体病的诊断方法,包括临床观察、病毒检测和抗体检测。此外,针对该病的治疗措施也进行了讨论,包括生物安全措施、对症治疗和疫苗预防。通过加强猪群管理和健康监测,以及合理使用疫苗,可以有效控制猪附红细胞体病的发生和传播。
简介:摘要目的探讨生物强度电场对人皮肤成纤维细胞(HSF)转化的调节作用。方法采用实验研究方法。取HSF,分为经200 mV/mm电场处理6 h的200 mV/mm电场组和置于电场装置中不通电处理6 h的模拟电场组,在活细胞工作站中观察细胞形态和排列变化;记录处理0、6 h细胞数,并计算细胞数变化率;观察并计算3 h内细胞运动方向、位移速度、轨迹速度(以上实验模拟电场组样本数为34、200 mV/mm电场组样本数为30);采用免疫荧光法检测处理3 h细胞α平滑肌肌动蛋白(α-SMA)的蛋白表达(样本数为3)。取HSF分为置于电场装置中不通电处理3 h的模拟电场组和经相应强度电场处理3 h的100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组,另取HSF分为置于电场装置中不通电处理6 h的模拟电场组和经200 mV/mm电场处理相应时间的电场处理1 h组、电场处理3 h组、电场处理6 h组,采用蛋白质印迹法检测α-SMA、增殖细胞核抗原(PCNA)的蛋白表达(样本数为3)。对数据行Mann-Whitney U检验、单因素方差分析、独立样本t检验及LSD检验。结果处理6 h,与模拟电场组相比,200 mV/mm电场组细胞形态拉长,并产生局部粘连;模拟电场组细胞任意排列,200 mV/mm电场组细胞呈有规律的纵向排列;2组细胞数变化率相近(P>0.05)。处理3 h内,200 mV/mm电场组细胞有明显的向正极运动趋势,模拟电场组细胞绕原点运动;与模拟电场组比较,200 mV/mm电场组细胞位移速度和轨迹速度均明显加快(Z值分别为-5.33、-5.41,P<0.01),方向性显著增强(Z=-4.39,P<0.01)。处理3 h,200 mV/mm电场组细胞α-SMA蛋白表达较模拟电场组明显增加(t=-9.81,P<0.01)。处理3 h,100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组细胞α-SMA蛋白表达分别为1.195±0.057、1.606±0.041、1.616±0.039,均明显多于模拟电场组的0.649±0.028(P<0.01)。与100 mV/mm电场组比较,200 mV/mm电场组、400 mV/mm电场组细胞α-SMA蛋白表达均明显增加(P<0.01)。电场处理1 h组、电场处理3 h组、电场处理6 h组细胞α-SMA蛋白表达分别为0.730±0.032、1.561±0.031、1.553±0.045,均明显多于模拟电场组的0.464±0.020(P<0.01);与电场处理1 h组比较,电场处理3 h组、电场处理6 h组细胞α-SMA蛋白表达均明显增加(P<0.01)。处理3 h,与模拟电场组比较,100 mV/mm电场组、200 mV/mm电场组、400 mV/mm电场组细胞PCNA蛋白表达均明显减少(P<0.05或P<0.01);与100 mV/mm电场组比较,200 mV/mm电场组、400 mV/mm电场组细胞PCNA蛋白表达均明显减少(P<0.05或P<0.01);与200 mV/mm电场组比较,400 mV/mm电场组细胞PCNA蛋白表达明显减少(P<0.01)。与模拟电场组比较,电场处理1 h组、电场处理3 h组、电场处理6 h组细胞PCNA蛋白表达均明显减少(P<0.01);与电场处理1 h组比较,电场处理3 h组、电场处理6 h组细胞PCNA蛋白表达均明显减少(P<0.05或P<0.01);与电场处理3 h组比较,电场处理6 h组细胞PCNA蛋白表达明显减少(P<0.01)。结论生物强度电场可诱导HSF迁移、促进Fb向肌Fb转化,且转化有一定的时间及电场强度依赖性。
简介:摘要目的探讨低氧条件下B淋巴细胞瘤-2/腺病毒E1B 19 000相互作用蛋白3(BNIP3)对人真皮微血管内皮细胞(HDMEC)迁移和运动性的影响及其机制。方法采用实验研究方法。(1)取HDMEC,采用随机数字表法(下同)分成行常规培养的常氧组及采用体积分数2%氧气低氧处理相应时间点的低氧6、12、24 h组,采用蛋白质印迹法检测细胞中BNIP3及微管相关蛋白1轻链3Ⅱ(LC3Ⅱ)的蛋白表达。(2)取HDMEC,分成常氧+空载组、常氧+BNIP3敲减组、低氧+空载组、低氧+BNIP3敲减组,分别转染空载病毒或BNIP3敲减病毒并进行常氧或低氧处理6 h,采用蛋白质印迹法和免疫荧光染色法检测BNIP3的蛋白表达;采用划痕试验检测划痕后24 h的划痕面积,并计算划痕愈合率;在活细胞工作站测算3 h内细胞运动的曲线距离,计算运动速度。(3)取HDMEC,同实验(2)分组及处理,采用蛋白质印迹法和免疫荧光染色法检测LC3Ⅱ的蛋白表达。以上实验样本数均为3。对数据行单因素方差分析及LSD检验。结果(1)与常氧组比较,低氧6、12、24 h组细胞BNIP3及LC3Ⅱ的蛋白表达量显著增加(P<0.01)。(2)培养6 h,与低氧+空载组比较,常氧+空载组和低氧+BNIP3敲减组细胞BNIP3的蛋白表达量显著下降(P<0.05或P<0.01)。常氧+空载组和常氧+BNIP3敲减组细胞中表示BNIP3蛋白表达的红色荧光较弱,低氧+空载组细胞红色荧光较强,低氧+BNIP3敲减组细胞中红色荧光较低氧+空载组明显减弱。划痕后24 h,低氧+空载组细胞划痕基本愈合,其他3组细胞剩余划痕面积较大。常氧+空载组、常氧+BNIP3敲减组、低氧+空载组、低氧+BNIP3敲减组细胞划痕愈合率分别为(61±4)%、(58±4)%、(88±4)%、(57±4)%。低氧+空载组细胞划痕愈合率明显高于常氧+空载组(P<0.01)和低氧+BNIP3敲减组(P<0.05)。观察3 h内,低氧+空载组细胞运动范围较常氧+空载组显著增大,低氧+BNIP3敲减组细胞运动范围较低氧+空载组明显缩小;低氧+空载组细胞曲线运动速度较常氧+空载组和低氧+BNIP3敲减组明显增加(P<0.01)。(3)培养6 h,与低氧+空载组比较,常氧+空载组和低氧+BNIP3敲减组细胞LC3Ⅱ的蛋白表达量显著下降(P<0.05或P<0.01)。培养6 h,常氧+空载组和常氧+BNIP3敲减组细胞中表示LC3蛋白表达的红色荧光较弱,低氧+空载组细胞红色荧光明显增强,低氧+BNIP3敲减组细胞红色荧光被显著抑制。结论低氧条件下BNIP3可促进HDMEC的迁移和运动性,且自噬可能参与BNIP3对HDMEC迁移和运动性的调节。
简介:摘要目的探讨组蛋白脱乙酰酶6(HDAC6)抑制剂Tubastatin A对人皮肤成纤维细胞(HSF)增殖及运动性的影响及其可能的分子机制。方法采用实验研究方法。取对数生长期HSF,按随机数字表法分为阴性对照组及1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组。阴性对照组加入含终体积分数0.1%二甲基亚砜的DMEM培养液(以下简称完全培养液),其余3组分别加入含相应终物质的量浓度Tubastatin A的完全培养液。常规培养24 h后,采用细胞计数试剂盒8(CCK-8)法和5-乙炔基-2'-脱氧尿嘧啶核苷(EdU)染色检测细胞增殖活力;在活细胞工作站下观察细胞3 h内运动范围,计算细胞曲线运动速度;采用蛋白质印迹法检测胞外信号调节激酶1/2(ERK1/2)及磷酸化ERK1/2(p-ERK1/2)的蛋白表达量,并计算p-ERK1/2与ERK1/2比值,以此表示ERK1/2活性。CCK-8法行细胞增殖活力检测样本数为6,其余实验样本数为3。对数据行单因素方差分析及LSD检验。结果培养24 h后,CCK-8法和EdU染色显示,与阴性对照组比较,1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞增殖活力均显著下降(P<0.01)。培养24 h后,CCK-8法显示,与1 μmol/L Tubastatin A组比较,10 μmol/L Tubastatin A组细胞增殖活力显著下降(P<0.05);EdU染色显示,与1 μmol/L Tubastatin A组比较,5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞增殖活力显著下降(P<0.05或P<0.01)。观察3 h内,1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞运动范围较阴性对照组明显缩小。观察3 h内,阴性对照组细胞曲线运动速度为(0.780±0.028)μm/min,明显快于1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞的(0.594±0.023)、(0.469±0.028)、(0.391±0.021)μm/min(P<0.01);1 μmol/L Tubastatin A组细胞曲线运动速度明显快于5 μmol/L Tubastatin A组和10 μmol/L Tubastatin A组(P<0.01);5 μmol/L Tubastatin A组细胞曲线运动速度明显快于10 μmol/L Tubastatin A组(P<0.05)。培养24 h后,与阴性对照组比较,1 μmol/L Tubastatin A组、5 μmol/L Tubastatin A组、10 μmol/L Tubastatin A组细胞ERK1/2的活性显著下降(P<0.01);与1 μmol/L Tubastatin A组比,5 μmol/L Tubastatin A组和10 μmol/L Tubastatin A组细胞ERK1/2的活性显著下降(P<0.01);与5 μmol/L Tubastatin A组比较,10 μmol/L Tubastatin A组细胞ERK1/2的活性显著下降(P<0.05)。结论HDAC6抑制剂Tubastatin A可能通过抑制ERK1/2活性,从而抑制HSF增殖及运动。