学科分类
/ 1
1 个结果
  • 简介:摘要目的通过对焦虑障碍高危人群、焦虑障碍患者和健康人群全频域自发电信进行频域分析,探索可用于识别焦虑障碍的特征性频段。方法2019年12月10日至2020年5月7日选取焦虑障碍高危人群(焦虑高危组,n=19)、焦虑障碍患者(阳性对照组,n=14)、健康正常人(正常对照组,n=19)作为研究对象。使用焦虑状态-特质问卷(state-trait anxiety inventory,S-TAI)、军事应激反应性焦虑预测量表(military stress anxiety predictive scale,MSAPS)对所有被试进行评估,并在问卷评估过程进行电监测。统计分析使用SPSS20.0统计软件,三组间脑电功率差异分析采用单因素方差分析和两两比较。结果三组在Delta[(2.11±0.66)μV2,(2.52±0.38)μV2,(2.73±0.47)μV2]、Theta[(1.31±0.43)μV2,(1.52±0.28)μV2,(1.67±0.35)μV2]、Alpha[(1.05±0.44)μV2,(1.29±0.25)μV2,(1.45±0.55)μV2]、Beta-1[(0.69±0.16)μV2,(0.86±0.18)μV2,(0.99±0.27)μV2]、Beta-2[(0.55±0.15)μV2,(0.67±0.18)μV2,(0.75±0.20)μV2]、Gamma频段[(0.31±0.09)μV2,(0.40±0.14)μV2,(0.45±0.16)μV2]Cz电极处的电功率差异均有统计学意义(F=3.80~9.21,均P<0.05)。经Bonferroni校正后两两比较,Beta-1频段下,焦虑高危组与正常对照组之间的电功率差异有统计学意义(P=0.03)。结论焦虑障碍高危人群和焦虑障碍患者的电信均在Cz处的Beta-1频段与健康人群有显著差异。这种电信的差异可为焦虑高危人群的识别和焦虑障碍的诊断提供有利的客观支持。

  • 标签: 特质焦虑 焦虑障碍 脑电图 Beta频段 频域分析